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COMPUTATIONAL COMPLEXITY OF DECOMPOSING

A SYMMETRIC MATRIX

AS A SUM OF POSITIVE SEMIDEFINITE AND DIAGONAL MATRICES

LEVENT TUNÇEL, STEPHEN A. VAVASIS, AND JINGYE XU

Abstract. We study several variants of decomposing a symmetric matrix into a sum of
a low-rank positive semidefinite matrix and a diagonal matrix. Such decompositions have
applications in factor analysis and they have been studied for many decades. On the one
hand, we prove that when the rank of the positive semidefinite matrix in the decomposition
is bounded above by an absolute constant, the problem can be solved in polynomial time. On
the other hand, we prove that, in general, these problems as well as their certain approxima-
tion versions are all NP-hard. Finally, we prove that many of these low-rank decomposition
problems are complete in the first-order theory of the reals; i.e., given any system of poly-
nomial equations, we can write down a low-rank decomposition problem in polynomial time
so that the original system has a solution iff our corresponding decomposition problem has
a feasible solution of certain (lowest) rank.

AMS Subject Classification: 65F55 (Numerical methods for low rank matrix approxi-
mation; matrix compression); 68Q17 (Computational difficulty of problems); 62H25 (Factor
analysis and principal components; correspondence analysis)

1. Introduction

When a matrix is representable as a sum of a low-rank matrix and a diagonal matrix, hav-
ing access to such a decomposition provides many desirable opportunities in many contexts.
These contexts include applications in big data, machine learning, statistical analysis, numer-
ical analysis and in the design and analysis of efficient algorithms for large-scale optimization
problems. In this paper, we are interested in the computational complexity of decomposing
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a given symmetric matrix as a sum of a diagonal matrix and a positive semidefinite matrix,
where the rank of the positive semidefinite matrix is as small as possible.

A very useful version of this optimization (low-rank decomposition) problem has been con-
sidered for at least 100 years in the area of factor analysis in statistics and data science
(see, for instance, Albert [1]). For some more recent sources, see Bertsimas et al. [4], Della
Riccia and Shapiro [10], Shapiro [25] and the references therein. This first version of the
decomposition problem, which we call (P1), expresses a given covariance matrix A as a sum
of a low-rank positive semidefinite matrix (determining the factors) and a diagonal matrix
(determining perturbation or noise):

minimize
d ∈ R

n
rank(A−Diag(d))(P1)

subject to A−Diag(d) � 0,

d ≥ 0,

where A ∈ S
n
+ is given.

In the above and the rest of the paper, Sn denotes the space of n-by-n symmetric matrices
with real entries, Sn

+ denotes the positive semidefinite matrices in S
n. We use the trace inner

product on S
n and the usual Euclidean inner product on R

n, all vectors are column vectors.

Diag : Rn → S
n is the linear map x 7→




x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn


 ; its adjoint diag : Sn → R

n is the

linear map X 7→




X11

X22
...

Xnn


. For a pair of matrices A,B, we write A � B (A ≻ B) to mean

(A− B) ∈ S
n
+ ((A−B) ∈ int(Sn

+) =: Sn
++).

A related optimization problem considered by Saunderson et al. [23] removes the non-
negativity constraint on the diagonal matrix of the decomposition:

minimize
d ∈ R

n
rank(A +Diag(d))(P2)

subject to A +Diag(d) � 0,

where A ∈ S
n is given and diag(A) = 0 (since there are no other constraints on d, we may

assume diag(A) = 0 for convenience).

Both (P1) and (P2) can be regarded as low-rank matrix completion problems with unspecified
diagonal entries and some additional constraints. To be able to treat a more general pattern
of unspecified entries, we introduce more notation. We denote by G := (V, E) a finite,
undirected simple graph with vertex set V and edge set E . Given such a graph G, we also use
the notation V(G) and E(G) to denote the vertices and the edges of G respectively. When the
graph is clear from the context, we simply use V and E . Kn denotes the clique on n vertices.
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We also use KV or K(V) to denote the clique with vertex set V. For example, E(K({a, b, c}))
denotes the set {{a, b}, {a, c}, {b, c}}.
We say L ∈ S

n fits an edge set X ⊆ E(K({1, . . . , n})) if Lij = 0 for all {i, j} ∈ X . With this
new notation, we define another optimization problem:

minimize
L ∈ S

n
rank(A + L)(P3)

subject to A+ L � 0,

L fits X ,

where A ∈ S
n is given. Note that in (P3), similar to (P2), the diagonal entries are always

unspecified. Therefore, without loss of generality, we assume diag(A) = 0 and Aij = 0 for
all {i, j} ∈ E(K({1, . . . , n})) \ X .

In all of the three optimization problems above, our objective function is always to mini-
mize the rank of a symmetric positive semidefinite matrix variable. The underlying matrix
variable is of rank r iff there exist vectors v1,v2, . . . ,vn ∈ R

r such that their span is R
r

and the ijth entry of the matrix is v⊤
i vj . Thus, we can equivalently think about the pos-

itive semidefinite matrix variable providing a lowest-dimensional (r-dimensional) geometric
representation given by the vectors v1,v2, . . . ,vn ∈ R

r. Therefore, there is a connection
between the optimization problems we consider in this paper and geometric representations
of graphs where the dimension of the representation space is minimized, see Laurent [14],
Lovász [15] and the references therein. A key difference is that in the geometric represen-
tations of graphs, the typical constraints either fix the diagonal of the positive semidefinite
matrix variable (orthonormal representations of graphs), or constrain the diagonal by fixing
or constraining the Euclidean distances between pairs of points in R

r representing the edges
in a given graph (Euclidean distance matrix completion or Euclidean graph realization), or
both (unit distance representations contained in a hypersphere, a ball, or an ellipsoid). In
such problems either the diagonal entries of the positive semidefinite matrix variable is fixed
or constrained, e.g., by conditions like Xii = 1 or Xii +Xjj − 2Xij = 1 = ‖vi − vj‖22.
On the other hand, our problem can also be viewed as a low-rank matrix completion prob-
lem. The minimization of nuclear norm has been used as a heuristic for such problems [11].
Minimization of nuclear norm subject to linear equations and inequalities can be formu-
lated as a Semidefinite Programming (SDP) problem. The recovery of an exact solution
to a low-rank matrix completion problem by solving the SDP relaxation is guaranteed on
average if the given matrix satisfies certain properties [20]. Recently, utilizing the SDP re-
laxation, Saunderson et al. [23] established links between (P2) and two geometric problems:
subspace realization and ellipsoid fitting, and provided a simple sufficient condition based on
coherence of a subspace for recovery of low-rank solutions. Beyond SDP relaxations, some
other heuristics have also been proposed in the literature for such problems. In [27], the
authors interpret such a problem from the statistical perspective and suggest a blockwise
coordinate descent algorithm. Their numerical experiments show that such heuristics per-
form well in terms of Kullback–Leibler loss. In [12], the authors place such problems into the
framework of Riemannian optimization and propose a so-called Riemannian rank-adaptive
method, which involves fixed-rank optimization, rank increase step and rank reduction step.
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In [21], the authors propose a stochastic gradient algorithm which implements a projected
incremental gradient method with a biased, random ordering of the increments.

There are various results establishing the hardness of computing low dimensional geometric
representations of graphs, such as Saxe [24] and Peeters [18]. For the hardness of low-
rank matrix completion, see Shitov [26] or Bertsimas et al. [5]. However, it seems that the
computational complexity of none of the low-rank optimization problems (P1), (P2), (P3) is
directly covered by existing results. Our results on completeness for the first-order theory of
the reals in Section 4 are most closely related to Shitov’s and use some of his techniques.

Next, we define a version of (P1) allowing approximate solutions so that inaccuracies and/or
uncertainties in data A and inaccuracies arising from finite precision computations can be
addressed.

Problem (
∼

P1): Fix a polynomial function p(n). Given A ∈ S
n, r ∈ Z+, ǫ ∈ [0, 1] such that

there exists d0 ∈ R
n and H0 ∈ S

n satisfying ‖H0‖F ≤ ǫ, d0 ≥ 0, A − Diag(d0) + H0 � 0,
and rank(A − Diag(d0) + H0) ≤ r, find d ∈ R

n
+ and H ∈ S

n such that ‖H‖F ≤ p(n) · ǫ,
A− Diag(d) +H � 0 and rank(A−Diag(d) +H) ≤ r.

The rationale behind this format of (
∼

P1) is as follows. The entries of the input matrix A are
known only within a tolerance ǫ measured in the Frobenius norm. A solution to the problem
is required to satisfy a weaker bound, namely, off by a polynomial factor p(n). The reason

for including the factor p(n) is to preclude the possibility that (
∼

P1) is NP-hard due only to
a technicality regarding the choice of norm.

To give an example of an issue with the norms, let ‖A‖max denote the maximum absolute
entry in A, and consider the problem:

Given an n × n matrix A and ǫ > 0 such that there exists a singular A′

satisfying ‖A− A′‖max ≤ ǫ, find a vector x in the right null space of such an
A′.

Even though testing near-singularity and finding right null vectors are ordinarily regarded
as solvable in polynomial time via the singular value decomposition (SVD), this version of
the problem is likely to be NP-hard (see [19] and the related results in [17]). This is partly
because the norm ‖ · ‖max is not well suited for measuring nearness to singularity.

On the other hand, consider weakening the problem to the following:

Given an n × n matrix A and ǫ > 0 such that there exists a singular A′

satisfying ‖A− A′‖max ≤ ǫ, find a vector x in the right null space of another
A′′ satisfying ‖A− A′′‖max ≤ 2nǫ.

In this case, we can solve the problem as follows. First, apply an SVD algorithm to A using
finite-precision arithmetic. By adjusting the precision of the arithmetic, we can assume that
this will yield the exact SVD of some matrix Ā satisfying ‖A − Ā‖F < ǫ/2. Suppose the
smallest singular value of Ā is σn. One of the following two statements must hold: (a)
σn ≤ 2nǫ − ǫ/2 or (b) σn ≥ nǫ + ǫ/2. (It is possible that both statements hold, in which
case either conclusion is acceptable.) If statement (a) holds, then there is a singular A′′
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satisfying ‖A′′ − Ā‖F ≤ σn < 2nǫ − ǫ/2 such that A′′ and Ā have the same right singular
vectors. Therefore, by the triangle inequality ‖A′′ − A‖F < 2nǫ. Since ‖X‖max ≤ ‖X‖F
for any X , the required A′′ and its right singular vector are found. If statement (b) holds,
then any singular A′ satisfies ‖A′ − Ā‖F ≥ σn ≥ nǫ + ǫ/2 and therefore ‖A′ − A‖F > nǫ.
Since ‖X‖max ≥ ‖X‖F/n for any X , this inequality shows that the promise in the problem
statement does not hold.

Moreover, we define (P̂1) which is similar to (
∼

P1) with an additional constraint on the sparsity

pattern of H : Hij = 0 if Aij = 0, ∀i 6= j, and similarly for H0. Likewise, we define (
∼

P2),

(
∼

P3), (P̂2), (P̂3) in a similar way to the above.

Our results on the computational complexity of these low-rank decomposition problems will
consider: rational data and the Turing machine model as well as real number data and the
Blum-Shub-Smale real number machine model [6]. In this paper, we will show following
results in order:

(i) When the optimal value of (P2) is O(1), (P2) can be solved in polynomial time. The
same statement holds for (P1).

(ii) (P1), (P2), (P3) and their approximation versions (
∼

P1), (
∼

P2), (
∼

P3), (P̂1), (P̂2), (P̂3) are
NP-hard.

(iii) (P2) and (P3) are both complete in the first-order theory of the reals.

2. Algorithms

In this section, we prove that (P1) and (P2) can be solved in polynomial time if their optimal
objective value is bounded above by an absolute constant. We begin with representing the
set of optimal solutions to (P2) as the solution set of a polynomial system of equations. Then,
we propose an algorithm to solve (P2) which runs in polynomial time if the optimal value
is r = O(1). Such an algorithm can be extended to handle (P1) as well. In a later section,
we will show that (P3) can be reduced to (P2) in polynomial time. However, unlike (P1)
and (P2), (P3) may be hard even when the optimal objective value (rank) is O(1). Indeed,
our reduction from (P3) to (P2) increases the optimal objective value (rank) substantially.
We continue with some well-known facts about Schur complements in relation to positive
semidefiniteness and rank.

Lemma 2.1. Assume A ∈ S
n, W ∈ R

k×n and for some B ∈ S
k, the block matrix

M :=

[
A W⊤

W B

]

is positive semidefinite. Then, there exist V1, V2 ∈ R
k×n such that W = V1A = BV2.

Lemma 2.2. (1) (Symmetric positive semidefinite case.) For A ∈ S
n
+ and W ∈ R

k×n,
suppose the columns of W⊤ lie in Range(A), and in particular, say W = V A for
some V ∈ R

k×n. Then

M :=

[
A W⊤

W B

]
� 0
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if and only if B � V AV ⊤. Moreover,

rank (M) = rank (A) + rank(B − V AV ⊤).

In the special case that A is nonsingular, this formula simplifies to

rank(M) = n+ rank(B − V AV ⊤) = n+ rank(B −WA−1W⊤).

(2) (Unsymmetric case.) Under the assumption that A ∈ R
n×n is nonsingular in the

block matrix

M :=

(
A B
C D

)
,

where B,C,D have conforming sizes, rank(M) = n + rank(D − CA−1B).

The following lemma describes the set of optimal solutions of (P2). To set up the next
lemma and its proof, note that for any A ∈ S

n with zero diagonal, d := −λn(A)e gives
a feasible solution of (P2) with objective value at most n − 1. Next, notice that (P2) has
a feasible solution with objective value r iff there exists U ∈ R

n×r such that rank(U) = r
and A + Diag(d) = UU⊤. Indeed, rank(U) = r iff there exists J ⊆ {1, 2, . . . , n} such that
|J | = r and the matrix UJ := U(J, :) is nonsingular. Suppose such J exists. We may assume
J = {1, 2, . . . , r}, and let J̄ := {1, 2, . . . , n} \ J . Then we have the block matrix equation

A +Diag(d) =

[
UJU

⊤
J UJU

⊤
J̄

UJ̄U
⊤
J UJ̄U

⊤
J̄

]

with (1,1) block symmetric positive definite. The following lemma exploits this structure.
To obtain the system in the statement of the lemma, one can directly analyze the above
matrix equation or utilize the properties of the Schur complements outlined in the previous
two lemmas.

Lemma 2.3. Let n ≥ 2 be an integer, A ∈ S
n with diag(A) = 0 and r ∈ {1, 2, . . . , n − 1}

be given. Then, d ∈ R
n is a feasible solution of (P2) with objective function value r if and

only if there exists J ⊆ {1, 2, . . . , n} such that |J | = r, and with J̄ := {1, 2, . . . , n} \ J the
following system has a solution (d, V ) ∈ R

n × S
r :

[A(J, i)⊗ A(J, j)]⊤ vec(V ) = Aij , ∀i, j ∈ J̄ , i < j;

[A(J, i)⊗ A(J, i)]⊤ vec(V ) = di, i ∈ J̄ ;(1)

e⊤i V
−1ej = Aij, ∀i, j ∈ J, i < j;

(V −1)ii = di, i ∈ J ;

V ∈ S
r
++.

Proof. Let d ∈ R
n be a feasible solution of (P2) with objective value r ∈ {1, 2, . . . , n − 1}.

Then, there exists U ∈ R
n×r such that UU⊤ − Diag(d) = A and rank(U) = r. Let J ⊂

{1, 2, . . . , n} be such that rank(UJ) = |J | = r. Further, let V := (UJU
⊤
J )

−1 ∈ S
r
++. Then,

(d, V ) satisfies all the constraints in (1).
6



Conversely, for some J ⊂ {1, 2, . . . , n} with |J | = r, suppose (d, V ) solves (1). Compute

Û ∈ R
r×r via the decomposition Û Û⊤ = V −1. Let

U(i, :) :=

{
Û(i, :), if i ∈ J

A(i, J)Û−T , if i ∈ J̄

where J̄ := {1, 2, . . . , n} \ J . Then [UU⊤ − Diag(d)]ij =

{
0, if i = j;

Aij , if i 6= j.

Therefore, d is a feasible solution to (P2) with objective value r. �

Since system (1) gives a complete characterization of all solutions (d, V ) corresponding to
the given J , we can design an algorithm based on a systematic way of solving this system.
During the first phase, we solve a linear system of equations and exploit the fact that we
can check positive definiteness of a given symmetric matrix efficiently and in a numerically
stable way. The next algorithm takes an index set J as part of its input and tries to solve
system (1) using only those constraints that are easy to handle.

Algorithm 1: linear solver with a given index set

input : A ∈ S
n, diag(A) = 0, J ⊆ {1, 2, . . . , n}

J̄ := {1, 2, . . . , n}\J, r := |J |, solve:
(2) [A(J, i)⊗A(J, j)]⊤ vec(V ) = Aij , ∀i < j and i, j ∈ J̄

if (2) has no solution then
return an infeasibility certificate that either the original problem is infeasible or
there may be a solution to the original problem but U(J, :) is singular in any
such solution.

else if (2) has infinitely many solutions then
return B ∈ R

k×r(r+1)/2,b ∈ R
k such that rank(B) = k, V solves (2) if and only if

B svec(V ) = b

else if the system (2) has a unique solution V then

if V /∈ S
r
++ or e⊤i V

−1ej 6= Aij , ∃i < j and i, j ∈ J then
return the corresponding certificate that either the original problem is
infeasible or there may be a solution to the original problem but U(J, :) is
singular in any such solution.

else

compute w ∈ R
n by: wi :=

{
(V −1)ii, ∀i ∈ J

A(J, i)⊤V A(J, i), ∀i ∈ J̄

return d := w
end

end

If Algorithm 1 fails to solve the problem (P2) and returns a linear system of equations whose
solution set contains all solutions to (P2) for the given index set J , we make use of this
information and proceed with the second phase in which we solve a system of polynomial
equations.
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Algorithm 2: nonlinear solver with a given index set

input : A ∈ S
n, diag(A) = 0, J := {j1, j2, . . . , jr} ⊆ {1, 2, ..., n}, B ∈ R

k×
r(r+1)

2 ,b ∈
R

k that rank(B) = k
solve:

(3)





B svec(V ) = b

Aij det(V )− adj(V (i, j)) = 0, ∀i < j, i, j ∈ J

det(VJkJk)z
2
k = 1, ∀k ∈ {1, 2, . . . , r} where Jk := {j1, j2, . . . , jk}

V ∈ S
r, z ∈ R

r

if (3) does not have a solution then
return an infeasibility certificate

else
let (V, z) denote a solution of (3)

compute w ∈ R
n by: wi :=

{
(V −1)ii, ∀i ∈ J

A(J, i)⊤V A(J, i), ∀i ∈ J̄

return d := w
end

In Algorithm 2, B svec(V ) = b may be written as [A(J, i)
s
⊗ A(J, j)] svec(V ) = Aij where

s
⊗ : Rr × R

r → R
r(r+1)/2 is symmetric Kronecker product and svec : Sr → R

r(r+1)/2 returns
the lower triangular part of a symmetric matrix. Also Aij det(V )− adj(V (i, j)) = 0 can be
written as e⊤i V

−1ej = Aij , provided det(V ) 6= 0.

Since Algorithm 1 can be implemented very efficiently for large scale instances, in some
applications it might be worthwhile run Algorithm 1 for many different subsets J before
resorting to Algorithm 2 (as one might get lucky). However, in this approach, in the worst
case, we might have to consider every subset J (of cardinality r) of {1, 2, . . . , n} to determine
whether (P2) has a feasible solution with objective value r:

Algorithm 3: solver without a given index set

input : A ∈ S
n, r ∈ {1, 2, . . . , n− 1}

for all possible J ⊆ {1, 2, . . . , n} such that |J | = r do
Run Algorithm 1 with input A and J . If Algorithm 1 succeeds, then return
its output. Otherwise, if Algorithm 1 fails and returns a linear system of
equations, run Algorithm 2 with input A and J and the returned linear
system. If Algorithm 2 succeeds, then return its output.

end

Example 2.4. Let

A :=




0 1 2 1 0
1 0 2 0 1
2 2 0 0 0
1 0 0 0 1
0 1 0 1 0



,
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and consider the corresponding instance of (P2). The 3-by-3 submatrix of A + Diag(d)

identified by the rows {1, 2, 3} and the columns {1, 4, 5} is



d1 1 0
1 0 1
2 0 0


. Since this matrix

is nonsingular for every d ∈ R
5, rank(A + Diag(d)) ≥ 3 for every d ∈ R

5. Hence, the
optimal objective value of (P2) is at least three. Next, consider d := [2, 2, 3, 2, 2]⊤. Then,
A + Diag(d) � 0 and rank(A + Diag(d)) = 3. So, d is an optimal solution. If we call
Algorithm 1 with inputs A and J := {1, 2, 3}, the system (2) will have infinitely many
solutions described by

V −1 =



α 1 2
1 β 2
2 2 γ


 and V21 = 1,

where α, β, γ ∈ R. So, Algorithm 1 will fail to completely solve (P2) with input A and J .
Therefore, for this instance, Algorithm 2 is needed to solve (P2). The solution set of the
resulting problem is characterized by two parameters α, β (and there is a unique value for γ,
γ := 4(α + β − 1)/(αβ)):

A(α, β) :=




α 1 2 1 0
1 β 2 0 1

2 2 4(α+β−1)
αβ

0 0

1 0 0 β
α−1

1
0 1 0 1 α

β−1



,

where α > 0, αβ > max{1, α+ β − 1}. Thus, Algorithm 2 will return the diagonal of one of
the above given infinitely many matrices.

Let us modify this example so that for our subset J , there are exactly two optimal solutions.
We can require that the range of (A + Diag(d)) contain the vector [1, 1,−1, 5, 5]⊤ for every
feasible solution d for the original matrix A, by redefining A as

A :=




0 1 2 1 0 1
1 0 2 0 1 1
2 2 0 0 0 −1
1 0 0 0 1 5
0 1 0 1 0 5
1 1 −1 5 5 0



.

Then, the optimal objective value is still equal to three, and all optimal solutions are char-
acterized by α ∈ {2, 4} and β := α (and for each of the choices, the unique entry for d6 that
does not increase the rank).

The above example also shows that there are instances of (P2) with exactly two optimal
solutions. This observation exposes possible complexity of optimal solution sets of (P2) and
hints at the existence of possible gadgets for NP-hardness proofs.

Since Algorithm 3 can determine whether a given instance of (P2) has a feasible solution
with objective value r, if the optimal objective value is r̄ = O(1), we can solve the problem
instance by enumerating all possible values for r ∈ {1, 2, . . . , r̄}.
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Theorem 2.5. If r = O(1), then Algorithm 3 can be implemented in polynomial time.
Thus, if the optimal value of an instance of (P2) is r̄ = O(1), then such instances of (P2)
can be solved in polynomial time by enumerating all possible ranks from 1 to r̄ and by calling
Algorithm 3 for each possible rank.

Proof. Algorithm 1 can be implemented to run in polynomial time, since it involves solving
a linear system of equations whose size is bounded by a polynomial function of the size of
the input A and performing a Cholesky decomposition (e.g., LDL⊤) on an r-by-r matrix.
If r = O(1), since the system (3) is a system of polynomial equations with O(r2) = O(1)
variables and O(r2) = O(1) equations, Algorithm 2 can be implemented to run in O(1) time
(e.g., by cylindrical algebraic decomposition, see for instance, [2,3,7,9,22] and the references
therein). In enumerating all possible ranks {1, 2, . . . , r̄}, Algorithm 3 calls Algorithm 1 and
Algorithm 2 at most

r̄∑

r=1

(
n

r

)
= O

(
nO(1)

)

times. Therefore, if r̄ = O(1), we can solve (P2) in polynomial time. �

The above approach can be extended to solving (P1).

Theorem 2.6. Every instance of (P1) with optimal value r̄ = O(1) can be solved in polyno-
mial time.

Remark 2.7. It should be noted that the obvious approach for extending the preceding al-
gorithm and our proof to the case of (P1), namely, introducing d1, . . . , dn as variables and
constraining them either via inequalities, i.e., dj ≥ 0 for j = 1, . . . , n, or via equalities, i.e.,
dj = y2j for j = 1, . . . , n, where yj’s are new real variables and repeating the same arguments
on this modified system, will not establish this theorem. This is because the introduction of
O(n) new variables into the polynomial system will lead to an algorithm exponential in n.
Therefore, the following proof develops an algorithm that uses only O(r2) variables.

Proof. First, we make modify (1) to account for the fact that in (P1), the diagonal entries of
the given A are positive and that d is subtracted from rather than added to diagonal entries
to obtain the following system.

(4)

[A(J, i)⊗ A(J, j)]⊤ vec(V ) = Aij , ∀i, j ∈ J̄ , i < j;

[A(J, i)⊗ A(J, i)]⊤ vec(V ) = A(i, i)− di, i ∈ J̄ ;

e⊤i V
−1ej = Aij, ∀i, j ∈ J, i < j;

(V −1)ii = A(i, i)− di, i ∈ J ;

V ∈ S
r
++;

di ≥ 0, ∀i = 1, . . . , n.

Next, we treat di for i ∈ J as new system variables, and constrain them via di ≥ 0 (or,
equivalently, di = y2i as noted above). This introduces an additional O(r) variables into the
system. We modify Algorithm 1 and Algorithm 2 accordingly.
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We drop the second constraint of (4), and we narrow the scope of the last constraint to:
di ≥ 0 for all i ∈ J . Next, treat di for each i ∈ J̄ as a function of the O(r2) variables:

(5) di(V ) = A(i, i)− [A(J, i)⊗A(J, i)]⊤ vec(V ).

Whenever Algorithm 1 terminates with a unique solution, we simply check whether di(V ) ≥ 0
for i ∈ J̄ . If so, we stop, we found a desired solution (for the r value being tested). Otherwise,
either Algorithm 1 correctly identifies the fact that (P1) has no feasible solution with the
tested objective value r where the tested subset J gives a nonsingular UJ , or Algorithm 1
returns a linear system of equations which hold at every solution of (P1) corresponding to
the given J .

For Algorithm 2, to solve the system of polynomial equations in (V, z,d(J)), we choose
an implementation (e.g., one based on cylindrical algebraic decomposition) which returns
a point from each connected component of the solution set of the polynomial system of
equations (3). Since r = O(1), the number of connected components of the solution set of
(3) is O(1). If one of these returned points corresponds to a nonnegative d(J̄), we are done.
Otherwise, each connected component either does not contain any points corresponding to
a nonnegative d(J̄), or its corresponding points in the d(J̄)-space crosses at least one of the
facets of the nonnegative orthant in dimension n−r, and such a crossing point is also a valid
solution. So, to find these crossings, we add an equation corresponding to each facet of the
nonnegative orthant and solve the new polynomial system with one additional equation in
the original variables. This equation has the form di(V ) = 0 for some i ∈ J̄ , where di(V ) is
the affine linear function of V given by (5).

Our argument about the status of the connected components above applies to each facet of
the nonnegative orthant. Thus, we apply the procedure recursively. Since (V, z,d(J)) lies in
S
r × R

r × R
r, the system is solved in O(1) time. At first glance it seems that the recursion

depth is O(n) since the recursion may need to eventually include every equation di(V ) = 0
for each i ∈ J̄ . If the recursion proceeds to depth n− r, the algorithm is still exponential in
n.

However, we can make the following observation. Each added equation of the form di(V ) = 0
for some i ∈ J̄ is a linear equation. The most number of non-redundant linear equations
that can be added to a system of linear and nonlinear equations in O(r2) variables is O(r2)
equations. Therefore, the recursion must stop after at most O(r2) levels. Thus, the overall

running time is O(nr2), where the leading coefficient is exponential in r. �

Beyond some special cases, such as when the optimal objective value of (P1), (P2) can
be bounded by an absolute constant, we do not know how to construct polynomial time
algorithms for these problems in general. Indeed, as we show in the next section, these
problems are NP-hard in general.

3. NP-hardness.

In this section, we prove NP-hardness of problems (P1), (P̂1), (
∼

P1), (P2), (P̂2), (P3), (P̂3),

and (
∼

P3). The proof of NP-hardness of (
∼

P2) is deferred to an appendix for reasons explained
below.
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The reductions are all from 3-coloring, and all rely on a construction by Peeters [18] described
below. We will provide the reductions for each problem and prove their correctness. We will
not provide explicit proofs that each construction is polynomial-time for a Turing machine
since it should be apparent to the reader that each reduction involves writing down numbers
whose length is polynomial in the size of the original input graph.

The following preliminary lemmas are used to establish the correctness of the reductions.

Lemma 3.1. Let A,B ∈ R
n×n such that A−1 exists and ‖B‖F · ‖A−1‖F < 1. Then A + B

is invertible and (A+B)−1 = A−1 + Z where

‖Z‖F ≤ ‖B‖F (
∥∥A−1

∥∥
F
)2/
(
1− ‖B‖F

∥∥A−1
∥∥
F

)
.

Proof. We claim that the formula for (A +B)−1 is

(A+B)−1 = A−1 + A−1

∞∑

i=1

(−BA−1)i.

First, note that the sum on the right-hand side is convergent since, by submultiplicativity,
the ith term in the summation is bounded by ‖BA−1‖iF , i.e., a decreasing geometric series
with a convergent sum. Therefore, the right-hand side is well defined. Now we confirm that
the right-hand side is the correct inverse by multiplying it by A +B:

(A +B)

(
A−1 + A−1

∞∑

i=1

(−BA−1)i

)
= I +

(
∞∑

i=1

(−BA−1)i

)
+BA−1

+BA−1

(
∞∑

i=1

(−BA−1)i

)

= I.

Finally, by submultiplicativity and the triangle inequality,
∥∥∥∥∥A

−1
∞∑

i=1

(−BA−1)i

∥∥∥∥∥
F

≤
∥∥A−1

∥∥
F
·
∥∥BA−1

∥∥
F
/
(
1−

∥∥BA−1
∥∥
F

)

≤ ‖B‖F ·
∥∥A−1

∥∥2
F
/
(
1− ‖B‖F ·

∥∥A−1
∥∥
F

)
.

�

An application of the previous lemma is the following fact that is used in this section and
again in the appendix. The rationale for this lemma is that H denotes a small perturbation
to K, while ∆ a small perturbation to D.

Lemma 3.2. Suppose K,H ∈ R
m×n, D ∈ S

n, D ≻ 0, ∆ ∈ S
n, ‖H‖F ≤ ‖K‖F/2, and ‖∆‖F ·

‖D−1‖F ≤ 1/2. Then D+∆ is invertible, and ‖(K +H)(D+∆)−1(K +H)⊤ −KD−1K⊤‖F
is bounded above by

1

2
‖K‖F · ‖D−1‖F

(
9‖K‖F · ‖D−1‖F · ‖∆‖F + 5‖H‖F

)
.
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Proof. First, observe by the previous lemma that D+∆ is invertible, and furthermore, if Z
denotes (D +∆)−1 −D−1, then

‖Z‖F ≤ 2‖∆‖F · ‖D−1‖2F .

Now observe that

(K +H)(D +∆)−1(K +H)⊤ −KD−1K⊤ = T1 + T2 + T3 + T4,

where

T1 = (K +H)Z(K +H)⊤,

T2 = KD−1H⊤,

T3 = HD−1K⊤,

T4 = HD−1H⊤.

Submultiplicativity on each term T1, . . . , T4, the triangle inequality, and overestimates of the
constants yield the result. �

We first show that (P3), (P̂3), and (
∼

P3) are NP-hard. All three hardness results use Peeters’
construction, which is as follows.

Definition 3.3. Starting from the input graph G, the Peeters supergraph of G is a new graph
G ′ := (V ′, E ′) such that V ⊆ V ′, E ⊆ E ′, and for each pair of distinct vertices i, j ∈ V, G ′

additionally contains four vertices aij , bij , cij, dij and also nine edges. Their connections are
shown in Fig. 1. We will denote this subgraph with six vertices and nine edges by Nij.

So, to construct the Peeters supergraph of G, we start from G, and for every pair of vertices
in G we add a triangular prism connecting them. It follows that |V ′| = |V| + 2|V|(|V| − 1)

and |E ′| = |E|+ 9

2
|V|(|V| − 1).

i

i

j

j
aij

aij

bij

bij
cij

cij

dij

dij

Figure 1. Triangular prism gadget Nij

Peeters argues (and it is relatively easy to convince oneself) that G is 3-colorable if and only
if G ′ is 3-colorable. Next, from G ′, Peeters constructs a partially specified matrix A(G ′) ∈ S

V

13



such that

A(G ′)ij :=





0, if {i, j} ∈ E(G ′),

unspecified but nonzero, if i = j,

unspecified, otherwise.

Peeters argues G ′ (and therefore G) is 3-colorable if and only if there is a way to complete
A(G ′) over R so that rank(A(G ′)) is minimized and equals to three. Note that Peeters’ result
applies to every field, but we only consider the field of real numbers for our purposes.

Completing A(G ′) so that rank(A(G ′)) is minimized is similar to (P3) with the following two
differences:

(i) (P3) additionally requires the completion to be positive semidefinite.
(ii) (P3) does not provide a direct means to specify that the diagonal entries of the com-

pletion must be nonzero.

For (i), our formulation is already consistent with Peeters’. Since in [18], when G ′ is 3-
colorable, the rank-three completion B is given as

Bij :=





0 (given) if {i, j} ∈ E ′,

1 if i = j,

0 if i, j have different colors,

1 if i, j have the same color.

Such a B is actually positive semidefinite since there exists a permutation matrix P such
that P maps {1, . . . , |V ′|} to J1 ∪ J2 ∪ J3 where each Ji is the set of vertices with the same
color and the following holds:

(6) P⊤BP =



T1

T2

T3


 ,

where each Ti ∈ S
Ji = 11⊤.

Therefore, to establish the NP-hardness of (P3) essentially requires modification of Peeters’
construction to close gap (ii). Our results further extend Peeters’ because we introduce

perturbations in (P̂3) and (
∼

P3). Our proof takes advantage of the requirement that the
completion be semidefinite. This is because some of Peeters’ original arguments (which do
not rely on semidefiniteness) do not easily handle perturbations.

We now present the (P3) input construction. Starting from an input graph G, we first
construct its Peeters supergraph G ′ = (V ′, E ′). Next, we construct A ∈ S

3|V ′| as follows:

A := I ⊗



1 1 1
1 1 1
1 1 1


− I,

where the first identity matrix is in S
V ′

and the second identity matrix is in S
3|V ′|.
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The purpose of the Kronecker product is to address point (ii) above, that is, to force diagonal
entries of the completion to be nonzero. Note that every node i of G ′ is in correspondence
with three rows and columns of A, say rows/columns numbered i(1), i(2), i(3). Define

X ⊆ E(K({1(1), 1(2), 1(3), . . . , |V(G ′)|(1), |V(G ′)|(2), |V(G ′)|(3)}))
to contain the nine unordered pairs of the form {i(µ), j(ν)}, µ, ν = 1, 2, 3 for each edge
{i, j} ∈ E(G ′). In addition, X contains the three unordered pairs of the form {i(µ), i(ν)}
for each i = 1, . . . , |V(G ′)| and for each µ, ν = 1, 2, 3, µ 6= ν. Thus, X contains a total of
9|E(G ′)|+ 3|V(G ′)| edges. This concludes the specification of the input (A,X ) to (P3).

The main theorem regarding this construction is as follows.

Theorem 3.4. Given a graph G, let (A,X ) be the (P3) input construction for G described
above. Then

(1) If G is 3-colorable, there exists a choice of L fitting X such that rank(A+L) ≤ 3 and
A+ L � 0.

(2) Conversely, there exists a universal constant ǫ0 > 0 such that the following is true.
If there is a choice of L ∈ S

3|V(G′)|, H ∈ S
3|V(G′)| satisfying the following conditions:

(a) L fits X ,
(b) ‖H‖F ≤ ǫ0,
(c) A + L+H � 0, and
(d) rank(A+ L+H) ≤ 3,
then G is 3-colorable.

Remark 3.5. This theorem simultaneously shows that (P3), (P̂3), and (
∼

P3) are NP-hard.
The specification of A is exact; in other words, if the graph is 3-colorable, then the first part
of the theorem says that input matrix A can be completed without any noise term. This

means that “ǫ” in the definition of (
∼

P3) and (P̂3) can be arbitrarily small. For example, the

“ǫ” specified in (
∼

P3) make be taken as ǫ0/p(n); then this theorem says that the solution to

(
∼

P3) determines whether a graph is 3-colorable. This will be the case for all reductions in
this section; the need for a perturbation to the input occurs only in the reduction given in the
appendix.

Remark 3.6. We do not explicitly compute the universal constant ǫ0, but our upcoming
analysis implies that it may taken as 10−12. The true constant is larger because the constants
in our analysis are not tight.

In the proof of the theorem, ǫ1, ǫ2, . . . denote a sequence of parameters that are all of the
form k1ǫ

k2
0 for positive k1, k2. The precise values of k1 and k2 can be deduced from the proofs.

Proof. Part (1) of the theorem is straightforward to prove: if G is 3-colorable, then so is
G ′ as already mentioned. For each {i, j} ∈ E(K(V(G ′))) \ E(G ′), let L(i(µ), j(ν)) = 1 for all
µ, ν = 1, 2, 3 if i, j are in the same color class, else let all of these entries be 0. Set all diagonal
entries of L to 1. The other entries of L, that is, off-diagonal entries corresponding to E(G ′)
or off-diagonal entries of diagonal blocks, are necessarily 0 because of the requirement that
L must fit X . Then A + L, after permutation, has the same form as in (6) and therefore is
positive semidefinite and of rank 3.
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Part (2) of the theorem requires two lemmas.

Lemma 3.7. If L, H satisfy conditions 2(a)–(d) of Theorem 3.4, then |(A+L+H)ii−1| ≤ ǫ2
for all i ∈ {1, 2, . . . , 3|V(G ′)|}.

Proof. The diagonal entries are of A + L + H are in correspondence with i(µ) as i ranges
over V(G ′) and µ ∈ {1, 2, 3}. Fix a particular i, and let us analyze the entry corresponding
to i(2) (the other cases are symmetric). There always exists a clique in G ′ of size three that
contains i thanks to the Peeters supergraph construction. Denote vertices in this clique by
i, j, k. Consider the 4-by-4 submatrix of A + L + H indexed by rows i(1), i(2), j(1), k(1) and
columns i(2), i(3), j(2), k(3). Denote this submatrix by B1 +H1 where

B1 :=




1 1 0 0
x 1 0 0
0 0 1 0
0 0 0 1


 , H1 :=

[
H

(1)
1 H

(2)
1

H
(3)
1 H

(4)
1

]
, H

(i)
1 ∈ R

2×2,
∥∥∥H(i)

1

∥∥∥
F
≤ ǫ0.

The scalar x in the above formulation is a diagonal entry and therefore corresponds to
L(i(2), i(2))+H(i(2), i(2)) since the diagonal entries of A are all 0’s. Without loss of generality,
we may assume that x = L(i(2), i(2)) and H(i(2), i(2)) = 0. We can further assume that x > 0
since A+ L+H � 0 and row i(2) is not all zeros.

Compute the Schur complement of the lower right 2-by-2 block of B1 +H1:

S :=

[
1 1
x 1

]
+H

(1)
1 −H

(2)
1

(
I +H

(4)
1

)−1

H
(3)
1

︸ ︷︷ ︸
:=T

.

By triangle inequality and the fact that ‖·‖F is submultiplicative, it follows that

(7) ‖T‖F ≤
∥∥∥H(1)

1

∥∥∥
F
+
∥∥∥H(2)

1

∥∥∥
F

∥∥∥H(3)
1

∥∥∥
F

∥∥∥∥
(
I +H

(4)
1

)−1
∥∥∥∥
F

≤ ǫ0 + ǫ20

∥∥∥∥
(
I +H

(4)
1

)−1
∥∥∥∥
F

.

Since
∥∥∥H(4)

1

∥∥∥
F
< 1, express (I+H

(4)
1 )−1 = I+

∞∑
i=1

(
−H

(4)
1

)i
and by triangle inequality again,

(8) ‖T‖F ≤ ǫ0 + ǫ20

(
2 +

∞∑

i=1

ǫi0

)
≤ ǫ0 + ǫ20

(
2 +

ǫ0
1− ǫ0

)
≤ ǫ1,

where ǫ1 = 2ǫ0, assuming ǫ0 is sufficiently small (as we have assumed).

If rank(A + L+H) ≤ 3, then by Lemma 2.2 it is necessary that rank(S) = 1 and therefore
the first row of S is linearly dependent on the second row of S and it follows that

1 + T11

x
=

1 + T12

1 + T22
=⇒ x =

(1 + T11)(1 + T22)

1 + T12

=⇒ (1− ǫ1)
2

(1 + ǫ1)
≤ x ≤ (1 + ǫ1)

2

(1− ǫ1)

=⇒ 1− ǫ2 ≤ x ≤ 1 + ǫ2,

where ǫ2 = 4ǫ1, assuming ǫ1 is sufficiently small. �
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Lemma 3.8. Assume L,H satisfy conditions 2(a)–(d) of Theorem 3.4. Suppose {i, j} ∈
E(K(V(G))) and µ, ν ∈ {1, 2, 3}. Let t := (A+ L+H)i(µ),j(ν). Then

(a) One of the following inequalities must hold:

• |t− 1| ≤ 1/20,
• |t+ 1| ≤ 1/20, or
• |t| ≤ 1/20.

(b) Assume further that {i, j} ∈ E(G). Then the third inequality of part (a) holds.

Remark 3.9. Note that the pair of vertices i, j in this lemma are assumed to be in the
original vertex set V, i.e., they are not internal vertices of the Peeters gadget Nij.

Proof. Before turning to part (a), we quickly dispense with part (b). Part (b) follows since
L(i(µ), j(ν)) = 0 if {i, j} ∈ E(G) ⊆ E(G ′) and L fits X . In addition, A(i(µ), j(ν)) = 0 in this
case, also by construction. Therefore, |t| = |H(i(µ), j(ν))|, and this number is at most ǫ0
hence also at most 1/20.

Now, turning to part (a), consider the 6 × 6 principal submatrix in A + L +H indexed by

i(µ), a
(µ)
ij , b

(µ)
ij , d

(µ)
ij j(ν), c

(µ)
ij . By Lemma 3.7, this submatrix has the form of B3 +H3 where

B3 :=




1 0 0 0 u v
0 1 0 w 0 x
0 0 1 y z 0
0 w y 1 0 0
u 0 z 0 1 0
v x 0 0 0 1



,

‖H3‖F ≤ 6ǫ2, B3 +H3 � 0, u, v, w, x, y, z ∈ R. In this submatrix, t = u+H3(5, 1). We will
show that u is close to one of −1, 0, or 1; in this case the result will follow since |t−u| ≤ 6ǫ2.

Before investigating this 6× 6 matrix, consider one of its 4× 4 submatrices

B4 := B3(1 : 4, 1 : 4) =




1 0 0 0
0 1 0 w
0 0 1 y
0 w y 1


 .

Note thatB4’s eigenvalues are 1, 1, 1−(w2+y2)1/2, 1+(w2+y2)1/2. Since (B3+H3)(1 : 4, 1 : 4)
is positive semidefinite and singular, it is necessary that |1 − (w2 + y2)1/2| ≤ ‖H3‖F ≤ 6ǫ2
(see [13, Cor. 8.1.6]). Assuming ǫ2 is sufficiently small, this implies, first, that w2 + y2 ≤ 2,

hence w2 ≤ 2, y2 ≤ 2. Furthermore, 1−(w2+y2)1/2 =
1− (w2 + y2)

1 + (w2 + y2)1/2
, then |1−(w2+y2)| ≤

6ǫ2(1+ (w2+ y2)1/2) ≤ 15ǫ2. A similar analysis can be applied to (w, y), (u, z), (v, x), (u, v),
(w, x) and (y, z).
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Next, consider the 4×4 principal submatrix of B3+H3 indexed by 1, 2, 5, 6. This submatrix
can be written in the form B5 +H5 where

B5 :=




1 0 u v
0 1 0 x
u 0 1 0
v x 0 1


 ,

and ‖H5‖F ≤ 6ǫ2. Let the eigenvalues of B5 be denoted λ1, . . . , λ4. Since B5 + H5 is
singular by the rank-3 assumption, it follows that one of the eigenvalues, say λ4, must
satisfy |λ4| ≤ ‖H5‖F . On the other hand, all four of them satisfy |λi| ≤ ‖B5‖F . Since
u2 + v2 ≤ 2 and v2 + x2 ≤ 2, it follows that ‖B5‖F ≤ 3. Thus, we have the following chain
of inequalities:

| det(B5)| = |λ1λ2λ3λ4|
≤ 33 · (6ǫ2) = 162ǫ2.

We can write | det(B5)| in closed form:

| det(B5)| = |(1− u2)(1− v2 − x2)− u2v2|.

We have shown that |1− u2| ≤ 1, while |1− v2 − x2| ≤ 15ǫ2. Thus,

162ǫ2 ≥ | det(B5)|
= |(1− u2)(1− v2 − x2)− u2v2|
≥ u2v2 − 15ǫ2.

Thus, we have arrived at the inequality u2v2 ≤ ǫ3, where ǫ3 := 177ǫ2. This means that either

u2 ≤ √
ǫ3 or v2 ≤ √

ǫ3. In other words, either |u| ≤ ǫ
1/4
3 or |v| ≤ ǫ

1/4
3 .

In the first case, we have established an upper bound on |u|, thus also establishing an upper

bound of ǫ
1/4
3 + 6ǫ2 on |t|. This shows that the third case of part (a) of the lemma holds,

assuming that ǫ0 is chosen sufficiently small so that ǫ
1/4
3 +6ǫ2 ≤ 1/20. In the case that |v| ≤

ǫ
1/4
3 , we know that |1−u2−v2| ≤ 15ǫ2, which implies that |1−u2| ≤ 15ǫ2+ |v|2 ≤ 15ǫ2+ ǫ

1/2
3 .

In other words, |1 − u| · |1 + u| ≤ 15ǫ2 + ǫ
1/2
3 , which means that either |1 − u| or |1 + u|

is bounded above by (15ǫ2 + ǫ
1/2
3 )1/2. This implies that the first or second case of part (a)

holds, assuming that (15ǫ2 + ǫ
1/2
3 )1/2 ≤ 1/20. This is assured by a sufficiently small choice

of ǫ0. �

Conclusion of proof of Theorem 3.4. We have already showed that if the graph G is 3-
colorable, then there exists a choice of L fitting X such that rank(A + L) ≤ 3, A + L � 0.
So to complete the proof, we need to show the opposite direction, namely, if there exists a
completion satisfying conditions 2(a)–(d) of the theorem, then G is 3-colorable. Therefore,
assume L,H exist that satisfy these conditions. For two nodes i, j ∈ V(G), write i ∼ j if i = j
or if the first or second condition of part (a) of Lemma 3.8 apply to t = (A+L+H)i(1),j(1) (i.e.,
t ≈ ±1 rather than t ≈ 0). Clearly, ‘∼’ defined in this manner is reflexive and symmetric.
We claim also that it is transitive. Suppose, e.g., that i ∼ j and j ∼ k; we wish to prove that
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i ∼ k. Assume i, j, k are distinct, else the result is obvious. By the lemma, the (i(1), j(1), k(1))
principal submatrix of A + L+H may be written as B6 +H6, where

B6 =




1 x z
x 1 y
z y 1


 ,

and ‖H6‖F ≤ 3/20. Here, x = ±1, y = ±1, and z ∈ {−1, 0, 1} since x + H6(2, 1) is the
quantity denoted as t in the lemma associated with {i(1), j(1)}, y is associated with {j(1), k(1)},
and z is associated with {i(1), k(1)}. However, we claim that if z = 0, then B6 +H6 cannot
be semidefinite, contradicting the assumption. To see this, suppose z = 0, and observe that
the three eigenvalues of B6 are 1−

√
2, 1+

√
2, 1 (irrespective of the choice of signs for x and

y). On the other hand, ‖H6‖F ≤ 3/20 <
√
2− 1. Therefore, B6 +H6 6� 0 in the case z = 0.

Thus, we conclude that z = ±1, implying that i ∼ k.

Thus, ‘∼’ is an equivalence relationship, and therefore it partitions the nodes of V(G) into m
equivalence classes V1, . . . ,Vm for some m ≥ 1. Observe that no edge can join two distinct
nodes i, j in the same class Vr since i ∼ j implies (A + L + H)i(1),j(1) ≈ ±1, but this is
precluded by part (b) of the lemma if {i, j} ∈ E(G). Thus, V1, . . . ,Vm define a valid m-
coloring of G. The last claim to prove, therefore, is that m ≤ 3. Suppose not; let i1, . . . , i4
lie in V1, . . . ,V4 respectively. Consider the principal submatrix of A + L + H indexed by

(i
(1)
1 , . . . , i

(1)
4 ), which has the form I + H7, where I denotes the 4 × 4 identity matrix and

‖H7‖F ≤ 4/20. The first term can be written as I because all the off-diagonal entries of

the (i
(1)
1 , . . . , i

(4)
4 )-principal submatrix of A+L+H are close to zero by the hypotheses that

i1 6∼ i2, i1 6∼ i3, etc., meaning that the third case of part (a) of the lemma applies to the
off-diagonal entries. Since ‖H7‖F < 1, it follows that I +H7 is nonsingular and hence is of
rank 4, contradicting the assumption. This concludes the proof of theorem. �

We next turn to the NP-hardness of (P1), (P̂1), and (
∼

P1). In this paragraph we present
the (P1) input construction. Let G be an undirected graph, and let (A0,X ) be the (P3)
input construction described in the paragraphs preceding Theorem 3.4. Recall that A0 ∈ S

n,
where we define n := 3|V(G ′)| and where G ′ is the Peeters supergraph of G. Recall also that
each vertex i ∈ V(G ′) corresponds to three rows/columns, say i(1), i(2), i(3) of A0. Let i be
called the parent of these three rows/columns. We denote the parent mapping by π(·), i.e.,
π(i(µ)) = i for µ = 1, 2, 3. Recall that (i′′, j′′) ∈ X means either that (π(i′′), π(j′′)) is an edge
in G ′ or that π(i′′) = π(j′′) but i′′ 6= j′′.

We call a pair {i′, j′} ∈ E(K(V(G ′)) \ E(G ′)) a nonedge of G ′. Let A ∈ S
n be defined as

A(i′′, j′′) =





2 if {π(i′′), π(j′′)} is a nonedge of G ′,
0 if {π(i′′), π(j′′)} ∈ E(G ′),
1 if π(i′′) = π(j′′) and i′′ 6= j′′,
0 if i′′ = j′′.

Thus, A has nearly the same definition asA0 except that its entries corresponding to nonedges
are 2’s instead of 0’s.

The nonedges of G ′ each correspond to nine symmetric pairs of 2’s inA. These nine pairs of 2’s
implicitly define an undirected graph whose nodes are the rows/columns of A and whose edges
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correspond to its unspecified entries. Call this graph G ′′, so that |V(G ′′)| = n = 3|V(G ′)|,
and let m := |E(G ′′)| = 9

((
|V(G′)|

2

)
− |E(G ′)|

)
. Let K ∈ {0, 1}n×m be the node-edge incidence

matrix of G ′′. Finally, define B ∈ S
m+n by

B :=

[
0 K⊤

K A

]
+ kI

where

(9) k := 2 max
v∈V(G′′)

{degree(v)}+ 1.

Theorem 3.10. Let B be constructed from input graph G using the (P1) input construction
in the preceding paragraphs. Then

• If G is 3-colorable, there exists d ∈ R
n+m
+ such that B − Diag(d) � 0 and rank(B −

Diag(d)) ≤ m+ 3.
• Conversely, if there exists d ∈ R

n+m
+ and H ∈ S

n+m such that ‖H‖F ≤ ǫ5, B −
Diag(d) +H � 0, and rank(B − Diag(d) +H) ≤ m+ 3, then G is 3-colorable.

Here, ǫ5 = c1ǫ0k
−σm−τ , where ǫ0 is the universal tolerance in Theorem 3.4. Also, c1, σ and

τ are universal constants whose values can be deduced from the forthcoming proof.

Remark 3.11. Note that this proof shows that all three of (P1), (P̂1), and (
∼

P1) are NP-hard
for the same reason noted in Remark 3.5.

Proof. First, suppose G is 3-colorable, and fix a particular 3-coloring. Recall that this 3-
coloring extends to G ′. Let the color of i′ ∈ V(G ′) be denoted c(i′) ∈ {1, 2, 3}. Then we
choose d := [dE ;dV ] ∈ R

m+n as follows. For an edge e = {i′′, j′′} ∈ E(G ′′), take

dEe =

{
k − 1, if c(π(i′′)) = c(π(j′′)),
k − 0.5, if c(π(i′′)) 6= c(π(j′′)).

For each i′′ ∈ V(G ′′), take dVi′′ = k − n1(i
′′)− 2n2(i

′′), where

n1(i
′′) = |{e ∈ E(G ′′) : e = {i′′, j′′} is incident on i′′ and c(π(i′′)) = c(π(j′′))}|,

n2(i
′′) = |{e ∈ E(G ′′) : e = {i′′, j′′} is incident on i′′ and c(π(i′′)) 6= c(π(j′′))}|.

The choice of k in (9) ensures that dE ≥ 0 and dV ≥ 0.

We claim that the Schur complement of the m×m leading principal block of B − Diag(d)
has form (6), and therefore rank(B − Diag(d)) = m + 3. Observe that the leading m ×m
block of B − Diag(d) is kI − Diag(dE), while the remaining n × n principal diagonal block
is A+ kI −Diag(dV). Therefore, the Schur complement of the (1, 1) block equals A+ kI −
Diag(dV)−K(kI −Diag(dE))−1K⊤. We will show that this matrix has the form of (6).

The (1, 1) block of B−Diag(d), kI −Diag(dE), is a diagonal matrix each of whose diagonal
entries is either 1 or 1/2 by construction of B and dE . By construction, the ‘1’ entries
correspond to pairs {i′′, j′′} of rows/columns of A such that π(i′′) and π(j′′) have the same
color, while the ‘1/2’ entries correspond to pairs with different colors. Therefore, K(kI −
Diag(dE))−1K⊤ is an n × n matrix that is the sum of 2 × 2 principal submatrices, one
submatrix for each {i′′, j′′} ∈ E(G ′′). This submatrix is composed of four 1’s at positions
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(i′′, i′′), (i′′, j′′), (j′′, i′′), and (j′′, j′′) if (π(i′′), π(j′′)) have the same color. The submatrix has
four 2’s at these positions if (π(i′′), π(j′′)) have different colors.

Since the entries of A in the off-diagonal positions of these submatrices are all 2’s, subtrac-
tion of K(kI − Diag(dE))−1K⊤ leaves a Schur complement A + kI − Diag(dV) − K(kI −
Diag(dE))−1K⊤ whose off-diagonal entries are 1’s if the parents of i′′, j′′ are in the same color
class or 0’s if they are in different color classes. Thus, the off-diagonal positions of this Schur
complement indeed correspond to (6).

As for the diagonal entries of the Schur complement, one checks that we have constructed
entries of dV equal exactly 1 plus the corresponding diagonal entry ofK(kI−Diag(dE))−1K⊤,
and thus the Schur complement has all 1’s on the diagonal. This concludes the argument
that the Schur complement has the same structure as (6) and thus has rank 3. The same
argument also assures semidefiniteness of the Schur complement, and therefore of the entire
matrix B − Diag(d).

Conversely, suppose there exists d ∈ R
n+m
+ , H ∈ S

n+m, ‖H‖F ≤ ǫ5 such that B − Diag(d) +

H � 0 and rank(B − Diag(d) + H) ≤ 3 + m. Partition H :=

[
H1 H⊤

2

H2 H3

]
so that H1 ∈

S
m, H2 ∈ R

n×m, H3 ∈ S
n.

The first step of the argument is to obtain a lower bound ((10) below) on the pivots in
the leading principal m × m block. Select an e = {u, v} ∈ E(G ′′). Consider the 2 × 2
principal submatrix of B−Diag(d)+H indexed by {e, u} (i.e., e is an index into the first m
rows/columns of B −Diag(d) +H , while u is an index into the last n rows/columns). This
submatrix has the form

B1 :=

[
k − d{u,v} + h1 1 + h2

1 + h2 k − du + h3

]
,

with h2
1 + 2h2

2 + h2
3 ≤ ǫ25 ≤ 1/16. Here, B1(1, 1) is a diagonal entry of kI − Diag(dE) +H1,

B1(1, 2) = B1(2, 1) comes fromK+H2, and B1(2, 2) is a diagonal entry of A+kI−Diag(dV)+
H3. Since B1 � 0,

det(B1) ≥ 0 =⇒ (k − d{u,v} + h1)(k − du + h3) ≥ (1 + h2)
2

=⇒ k − d{u,v} + h1 ≥
(1 + h2)

2

k − du + h3

=⇒ k − d{u,v} + h1 ≥
1

2(k + 1)
,(10)

where the last line follows since k − du + h3 ≤ k + 1 and 1 + h2 ≥ 3/4.

Write H1 = HD
1 + HO

1 , where HD
1 contains the diagonal entries and HO

1 contains the off-
diagonal entries. The Schur complement of the (1, 1) block of B +H −Diag(d) is

S := A+ kI − Diag(dV) +H3 − (K +H2)(kI − Diag(dE) +HD
1 +HO

1 )
−1(K⊤ +H⊤

2 )

= S̄ +H3 + T

where

S̄ = A+ kI − Diag(dV)−K(kI −Diag(dE) +HD
1 )−1K⊤,
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and ‖T‖F is at most

1

2
‖K‖F ·‖(kI−Diag(dE)+HD

1 )−1‖F ·
(
9‖K‖F · ‖(kI − Diag(dE) +HD

1 )−1‖F · ‖HO
1 ‖F + 5‖H2‖F

)

by Lemma 3.2. The lemma is applicable because by assumption ‖HO
1 ‖F ≤ ǫ5 and

‖(kI−Diag(dE)+HD
1 )−1‖F ≤ 2

√
m(k+1) by (10), assuming we impose the restriction that

ǫ5 ≤ 1/(4
√
m(k + 1)).

Furthermore, ‖H2‖F ≤ ǫ5 while ‖K‖F =
√
2m. Substituting these bounds into the preceding

inequality yields:

‖T‖F ≤
√
2m(k + 1)

[
18
√
2m(k + 1) + 5

]
ǫ5 ≤ 40m2(k + 1)2ǫ5.

Note that S̄ is of the form A0+L, where A0 is matrix used in the proof of Theorem 3.4, and
L = kI − Diag(dV) −K(kI − Diag(dE) +HD

1 )−1K⊤. The nonzero entries of L are exactly
on the diagonal and in the positions of A not indexed by X , thus indicating that L fits X .

Thus, we conclude that the Schur complement S of the (1, 1) block of B − Diag(d) +H is
written as A0 + L + H ′ where H ′ = H3 + T and therefore ‖H ′‖F ≤ ǫ5 + 40m2(k + 1)2ǫ5.
By choosing a suitable ǫ5, we are assured that this bound is less than ǫ0. We have already
explained that L fits X . As the Schur complement of a positive definite leading principal
submatrix, it follows that A0 + L+H ′ � 0.

Now applying Lemma 2.2, it follows that

3 +m ≥ rank(B − Diag(d) +H)

= rank(kI − Diag(dE) +H1) + rank(S)

= m+ rank(A0 + L+H ′).

Thus, rank(A0 + L+H ′) ≤ 3. Since L fits X and ‖H ′‖F ≤ ǫ0, Theorem 3.4 states that G is
3-colorable. �

Finally, we prove that (P2) and (P̂2) are NP-hard. The (P2) input construction that we
now present is quite similar to the (P1) input construction that precedes Theorem 3.10. In
particular, we use the same choice of A and K as before. Finally, we take B ∈ S

m+n to be

B :=

[
0 K⊤

K A

]
,

which is the same as the (P1) input construction except for the omission of the additive term
kI.

Theorem 3.12. Let B be constructed from input graph G using the (P2) input construction
from the previous paragraph. Then

• If G is 3-colorable, there exists d ∈ R
n+m
+ such that B + Diag(d) � 0 and rank(B +

Diag(d)) ≤ m+ 3.
• Conversely, if there exists d ∈ R

n+m
+ and H ∈ S

n+m such that ‖H‖F ≤ ǫ0, B +
Diag(d) + H � 0, rank(B + Diag(d) +H) ≤ 3 +m, and nz(H) ⊆ nz(B) then G is
3-colorable.
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Here ǫ0 is the universal constant in Theorem 3.4.

Remark 3.13. Note that this proof shows that both (P2) and (P̂2) are NP-hard. The theorem

does not apply to (
∼

P2) because of the restriction in the second claim on the nonzero entries
of H. We return to this point after the proof is complete.

Proof. The proof of the first claim is nearly identical the the proof of the first claim of Theo-
rem 3.10. Assuming G is 3-colorable, we fix a 3-coloring of G ′ and we select diagonal entries
for the (1, 1) block of either 1/2 or 1 depending whether the endpoints of the corresponding
nonedge are of different or the same color. The resulting matrix has rank at most m+ 3 for
the same reason as in the proof of Theorem 3.10.

For the proof of the second claim, we partition H and d in the same manner as in the proof
of Theorem 3.10. By the assumption that nz(H) ⊆ nz(B), H1 = 0. Similar to Theorem 3.10,
we can write the Schur complement of the (1, 1) block of B +Diag(d) +H as

S := A+Diag(dV) +H3 − (K +H2) Diag(dE)−1(K +H2)
⊤,

with ‖H3‖F ≤ ǫ0. Now we observe that L := Diag(dV)− (K+H2) Diag(dE)−1(K+H2)
⊤ can

have nonzero entries only in the entries of S corresponding to nonedges of G ′ because K and
H2 have the same sparsity pattern. Therefore, the additive term can affect only the entries
of A + H3 that were already allowed to be arbitrary in the second claim of Theorem 3.4,
i.e., L fits X . Thus, by the second claim Theorem 3.4, if rank(S) ≤ 3 and S � 0, then G is
3-colorable. �

We now explain why the technique used in Theorem 3.10 to show that (
∼

P1) is NP-hard does

not immediately extend in the preceding theorem to show that (
∼

P2) is NP-hard. In the proof

that (
∼

P1) is hard, we needed a bound on the perturbations terms in S, the Schur complement
of the (1, 1) block. For this purpose, we used Lemma 3.2. For this lemma, we needed an
upper bound on the entries of (kI −Diag(dE) +HD

1 )−1, i.e., a lower bound on the diagonal
entries of kI−Diag(dE)+HD

1 . This lower bound came from (10), which relied in turn on an
upper bound of k + 1 on B1(2, 2) = k − du + h3. The reason there is an upper bound in on

B1(2, 2) in (
∼

P1) is that a nonnegative vector d is subtracted from the diagonal entries of the

given matrix. In contrast, in (
∼

P2), a nonnegative entry is added to the diagonal entries, and

hence the corresponding matrix B1(2, 2) in the context of (
∼

P2) has no prior upper bound.
This means that there is no prior lower bound on the pivots, meaning there is no prior upper
bound on the Schur-complement update term arising in the proof of Theorem 3.10.

Thus, we need to construct a different B for (
∼

P2) and a more complicated argument to show
that even in the presence of small pivots in the (1, 1) block, if G is not 3-colorable, then there
is no rank-3 completion of the Schur complement. This proof is deferred to the appendix.

4. Completeness in the first-order theory of the reals

In Section 2, we saw that we can solve problems (P1) and (P2) by solving a series of systems of
polynomial equations. Those algorithms may need to solve exponentially many polynomial
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systems in the worst case. However, since the decision version of (P2) that asks whether the
optimal value is r, can be formulated as

UU⊤ − Diag(d) = A,

where the variables are U ∈ R
n×r and d ∈ R

n, we see that solving these problems is no harder
than solving some specially structured polynomial systems with the number of variables and
equations bounded by a polynomial function of n (and the degree of each polynomial is at
most 2). In this section, we will show that (P2) and (P3) are complete for the complexity
class of solving real polynomial system, also called first-order theory of the reals and usually
denoted ∃R in the literature. This yields another proof that these two problems are NP-hard
and further establishes that both problems lie in PSPACE since NP ⊆ ∃R ⊆ PSPACE, the
latter inclusion a result of Canny [8]. The results in this section are independent of those
in the previous section because the results in this section assume exact input data and are
therefore not amenable to perturbation. On the other hand, the results in this section exactly
characterize the complexity of (P2) and (P3), whereas the previous section established NP-
hardness but not an exact characterization of the complexity. In this section, the problems
under consideration are decision problems. In other words, (P1) is understood as: given A
and r, does there exist a d ≥ 0 such that rank(A − Diag(d)) ≤ r and A − Diag(d) � 0?
An algorithm to solve this problem is required merely to correctly output yes/no without
necessarily producing the vector d. The same applies for (P2) and (P3).

We start with a claim that (P3) is reducible to (P2), and therefore a proof of the completeness
of (P3) immediately extends to (P2). (The opposite reduction is trivial, since (P2) is a special
case of (P3).) Our argument does not, however, extend to (P1) for reasons explained below.
Note that the results in the previous section do not imply a reduction of (P3) to (P2) because
the theorems in that section started with a graph-coloring instance rather than a generic
instance of (P3).

The reduction of (P3) to (P2) again involves an off-diagonal block called K constructed in the
previous section, which is a node-edge incidence matrix all of whose entries were either 0 or 1.
Taking the Schur complement of the (1, 1) block causes K to subtract arbitrary nonnegative
numbers from the specified off-diagonal entries of A. For a fully general reduction of (P3)
to (P2), we need to either add or subtract numbers from the specified off-diagonal entries.
This is accomplished by taking a Schur complement twice, once with K and a second time
with K̄, which is a node-arc (rather than node-edge) incidence matrix for the rows/columns
of the unspecified entries of A.

We now formally present this construction and the theorem establishing its correctness.
Given an instance of (P3), that is, A ∈ S

n, X ⊆ E(K({1, . . . , n})), let X c denote
E(K({1, . . . , n})) \ X , m := |X c|, and

B ∈ S
2m+n :=



0 0 K⊤

0 0 K
⊤

K K A




be an instance of (P2). Here, K ∈ {0, 1}n×m is the node-edge incidence matrix of X c (in
other words, one row per index in {1, . . . , n}, one column per entry {i, j} ∈ X c, and exactly
two 1’s in this column in positions i and j). On the other hand, K ∈ {−1, 0, 1}n×m is the
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node-arc incidence matrix of X c after assigning an arbitrary orientation to the edges. The
following theorem states that this construction reduces (P3) to (P2).

Theorem 4.1. Let (A,X , r) be input data for (P3) (r ∈ {1, . . . , n}), let B be the input
matrix constructed in the preceding paragraph, and consider input data (B, 2m+ r) for (P2).
Then,

(i) there exists an R ∈ S
n such that R fits X , A+R � 0, and rank(A +R) ≤ r

if and only if

(ii) there exists a [u;v;d] ∈ R
m × R

m × R
n such that B + Diag([u;v;d]) � 0 and

rank(B +Diag([u;v;d])) ≤ 2m+ r.

Proof. (ii)⇒(i). Suppose [u;v;d] ∈ R
2m+n satisfies B + Diag([u;v;d]) � 0 and rank(B +

Diag([u;v;d])) ≤ 2m+r for some r. Let R := Diag(d)−K Diag(u)−1K⊤−K̄ Diag(v)−1K̄⊤.
Since the entries of u,v are associated with {i, j} ∈ X c, assign subscripts to these entries as
uij, vij respectively for {i, j} ∈ X c.

Under hypothesis (ii), necessarily u > 0 and v > 0 since every column of K has at least one
nonzero entry. By Lemma 2.2,



Diag(u) 0 K⊤

0 Diag(v) K
⊤

K K A+Diag(d)


 � 0

implies A+R � 0. Furthermore, and 2m+ r ≥ rank(B+Diag([u;v;d])) = rank(Diag(u))+
rank(Diag(v)) + rank(A+R) = 2m+ rank(A+R). Notice that R fits X and, in particular,
has the following structure:

Rij =





di −
∑

il∈δ(i)

(
1

uil
+

1

vil

)
, if i = j,

−
(

1

uij
− 1

vij

)
, if {i, j} ∈ X c,

0, otherwise.

(i)⇒(ii). Suppose that R ∈ S
n, R fits X , A + R � 0 and rank(A + R) ≤ r. We construct

[u;v;d] ∈ R
2m+n as follows:

(11)

vij :=
1

|Rij |+ 1
, ∀{i, j} ∈ X c,

uij :=
vij

1− vijRij
, ∀{i, j} ∈ X c,

di := Rii +
∑

ij∈δ(i)

(
1

uij
+

1

vij

)
, ∀i ∈ {1, . . . , n}.

Note that the denominator of uij is assuredly positive because of the definition of vij . Under
this construction, we have Diag(d) − K Diag(u)−1K⊤ − K̄ Diag(v)−1K̄⊤ = R. Applying
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Lemma 2.2, it follows that B + Diag([u;v;d]) � 0 and rank(B + Diag([u;v;d])) = 2m +
rank(A +R) ≤ 2m+ r. �

Next, we explain why (P3) lies in ∃R. Suppose (A,X , r) is input data for (P3). Observe
that (P3) may be written as: do there exist L ∈ S

n and U ∈ R
n×r such that L fits X and

A + L = UU⊤? Both conditions, namely “L fits X ” and “A + L = UU⊤,” are polynomial
equations in the unknowns L, U .

The main result of this section is the other direction, namely, the reduction of existence of
a solution to an arbitrary polynomial system to (P3). Our proof is based on Shitov’s result
in [26]. Our proof works for both Turing-machine model (which is the usual definition of
∃R) and a real-number model of computation (see, e.g., [6]) as it only involves elementary
arithmetic operations. In the Turing machine case, one assumes that the input to (P3) (i.e.,
specified matrix entries) consists of integer data, while in the real-number case, the input to
(P3) may contain arbitrary real numbers. Shitov shows that finding a solution of any real
polynomial system can be reduced to finding rank-3 matrix completion of certain symmetric
matrix. A related idea appeared in [16] that for every positive integer d, every semialgebraic
set in R

d is “stably equivalent1” to the set of all geometric (matrix) realizations of a rank-3
oriented matroid.

The reason that Shitov’s result does not apply directly is that his reduction specifies some di-
agonal entries of the input matrix, whereas for (P3), all diagonal entries must be unspecified.
Therefore, our presentation follows Shitov’s construction while focusing particular attention
on how our construction diverges from Shitov’s. Assume we are given a system of polyno-
mial equalities and inequalities with vector of variables x ∈ R

n. A polynomial inequality
of the form p(x) ≥ 0 can be replaced by p(x) = z2, where z is a new variable. Similarly,
an inequality of the form p(x) > 0 may be replaced by z2p(x) = 1, where again z is a new
variable. Thus, we may assume that our system is written f1(x) = · · · = ft(x) = 0 where
F = (f1, . . . , ft) is a sequence of polynomials.

For any monomial p = ξxi1 . . . xik (with ξ ∈ Z in the Turing machine model or ξ ∈ R in the
real-number model) appearing in one of the fs’s, we define

σ(p) := {±1,±ξ,±xi1 ,±xi1xi2 , . . . ,±xi1 . . . xik , p},
that is, a sequence of 2k + 5 monomials.

For a general real polynomial f = p1+ · · ·+ ps written as a sum of monomials, we define the
following sequence of polynomials:

σ(f) := σ(p1) ∪ σ(p2) ∪ · · · ∪ σ(ps) ∪ {0,±p1,±(p1 + p2), . . . ,±f} ∪ {±x1, . . . ,±xn}
and for the input sequence of real polynomials F = {f1, f2, . . . , ft}, we define σ(F ) :=
σ(f1) ∪ σ(f2) ∪ · · · ∪ σ(ft).

Let σ = σ(F ), and let σ3 denote all triples of elements in σ. We denote by H = H(F ) the
set of those 3-vectors in σ3 that have one or more entries equal to 1 or −1.

For this proof, we need four types of matrices. A plain symbol like A denotes a matrix in
R

m×n or Sn. The notation A[x] denotes a matrix whose entries are polynomials in unknowns

1for a definition, see [16]
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x1, . . . , xn and whose coefficients are in Z in the Turing-machine case or in R in the real-
number model case. Given such a polynomial matrix, if ξ ∈ R

n is a vector of numbers, then
A[ξ] denotes the numerical matrix resulting from substituting ξ for x.

The notation A∗ denotes a matrix whose entries either are in the base ring (Z or R) or are
‘∗’, meaning ‘unspecified.’ Finally, if A∗ is a matrix with some unspecified entries, then A#

is a matrix in R
m×n or S

n (i.e., with real-number entries) that represents a completion of
A∗, in other words, each ‘∗’ in A∗ is replaced by a real number.

Denote by U [x] the |H| × 3 matrix whose columns are the vectors in H in some order and
define W [x] = U [x]⊤U [x]. Shitov constructs a symmetric |H| × |H| matrix B∗ in following
way:

B∗(u,v) :=





0 if W [x](u,v) ∈ F

W [x](u,v) if W [x](u,v) is a constant (i.e., a degree-0 polynomial)

∗ otherwise.

In this definition, u,v represent two elements of H.

Remark 4.2. The rank of any completion of B∗ will be at least 3 because the columns of
the 3× 3 identity matrix appears as elements of H.

Shitov’s main result establishes an equivalence between completing B∗ and solving the poly-
nomial system. These results are as follows.

Lemma 4.3. (see Lemma 11 in [26]) Let P, L be 3 × |H| matrices over R such that the
matrix P⊤L is a completion of B∗. Let C be the matrix obtained by taking the columns of
L with indices in E = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ H. Then we have C⊤P = C−1L = U [ξ]
where ξ is a solution of the system of polynomial equations f1 = 0, . . . , ft = 0.

Corollary 4.4. (see Corollary 12 in [26]) System of polynomial equations f1 = 0, . . . , ft = 0
has a solution if and only if B∗ admits a rank-3 completion with respect to R .

One direction of Shitov’s proof is straightforward: If ξ is a solution to f1 = 0, . . . , ft = 0,
then B# := W [ξ] = U [ξ]⊤U [ξ] is a valid completion of B∗. The other direction of his
proof shows inductively that a completion of B∗ must have the form W [ξ] for some ξ. The
proof proceeds from constants to monomials to polynomials, showing that each step of the
completion is essentially forced. Since B∗(u,v) = 0 for (u,v) such that W [x](u,v) is a
polynomial in the original system, this induction shows that a valid completion exists if and
only if the original polynomials can simultaneously be set to 0 by ξ.

Corollary 4.4 does not immediately apply to (P3) because the constructed matrix B∗ may
have specified diagonal entries (i.e., diagonal entries not equal to ‘∗’) and therefore is not a
valid input instance of (P3).

Let H denote the extension of H to the multiset H := H∪E where E = {e1, e1, e2, e2, e3, e3}
(i.e., two copies of each column of the 3×3 identity matrix) so that |H| = |H|+6. Construct
3 × |H| matrix U [x] and W [x] = U [x]⊤U [x] from H in the same way that U [x], W [x] were

constructed from H. Furthermore, construct B
∗
with respect to W [x] in the same way that

B∗ was constructed with respect to W [x]. However, unlike the construction of B∗, we make
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all diagonal entries of B
∗
unspecified even if they are constant. In this way, B

∗
is a valid

input instance for (P3).

Theorem 4.5. The system of polynomial equations f1 = 0, . . . , ft = 0 has a solution over
R iff B

∗
can be completed to a rank-3 positive semidefinite matrix (i.e., a solution to (P3) is

obtained).

Proof. The forward direction is straightforward (and is the same as the forward direction

in [26]). Suppose f1(ξ) = · · · = ft(ξ) = 0 for some ξ ∈ R
n. Define B

#
:= (U [ξ])⊤U [ξ].

Then B
#
defined in this manner is indeed a valid completion of B

∗
. In particular, B

∗
and

B
#
agree in all specified entries corresponding to inner products of degree-0 3-vectors. Since

fi(ξ) = 0 for all i = 1, . . . , t, the entries of B
#
corresponding to these polynomials are equal

to 0 and hence equal to the specified entries of B
∗
.

The remainder of the proof focuses on the reverse direction, and therefore, assume there exists

a completion of B
∗
that is a rank-3 positive semidefinite matrix. Let e

(j)
i for i = 1, . . . , 3,

j = 1, . . . , 3 denote the three copies of ei in H (two in the extension E and one original in
H), and let E ′ be this set of nine entries of H.

Let R ∈ R
3×|H| be such that R

⊤
R is a completion of B

∗
. Note B

∗
(E ′, E ′) has the form



B∗

1 0 0
0 B∗

2 0
0 0 B∗

3


 where B∗

i :=



∗ 1 1
1 ∗ 1
1 1 ∗


 , ∀i ∈ {1, 2, 3}.

Since R
⊤
R is a rank-3 completion, this means each B∗

i is completed to be a rank-1 matrix.

Lemma 4.6. There is a unique way to complete B∗
i to a rank-1 semidefinite matrix, namely,

setting each ∗ to be 1.

Proof. Let B#
i be the rank-1 semidefinite completion of B∗

i . Suppose for a contradiction that

B#
i (1, 1) < 1. Then it must hold that B#

i (2, 2) > 1 because det(B#
i (1 : 2, 1 : 2)) ≥ 0. Then

a contradiction is obtained by considering whether B#
i (3, 3) ≤ 1 or B#

i (3, 3) ≥ 1 as follows.

If B#
i (3, 3) ≤ 1 then one sees that det(B#

i ([1, 3], [1, 3])) < 0. If B#
i (3, 3) ≥ 1, then one sees

that rank(B#
i (2 : 3, 2 : 3)) = 2. Either case contradicts the assumption that B#

i is positive

semidefinite and rank-1. A similar contradiction arises if we start by assuming B#
i (1, 1) > 1.

Finally, by symmetry among the three rows, the same contradiction arises if B#
i (2, 2) 6= 1

or B#
i (3, 3) 6= 1. �

Let J ⊆ H denote the set {e(1)1 , e
(1)
2 , e

(1)
3 }, where the superscript (1) without loss of generality

indexes a copy of ei in the extension E rather than the original H. By the analysis above,

we have (R
⊤
R)(J, J) = I. In this case, there exists an orthogonal matrix C ∈ R

3×3 such

that (CR)(:, J) = I and (CR)⊤CR = R
⊤
R. Thus we can assume without loss of gener-

ality that C is the identity matrix. In this case, we have R(:, e
(1)
1 ) = [1, 0, 0]⊤, R(:, e

(1)
2 ) =

[0, 1, 0]⊤, R(:, e
(1)
3 ) = [0, 0, 1]⊤.
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Now, let u ∈ H such that B∗(u,u) is a constant rather than ‘∗’. (Note that the previous

sentence refers to the original (H, B∗) rather than (H, B
∗
).) We claim that (R

⊤
R)(u,u) =

B∗(u,u). Since each entry of u is a constant and B∗(u, e
(1)
i ) is an off-diagonal entry of

B∗, (since u ∈ H and e
(1)
i ∈ E), we have B∗(u, e

(1)
1 ) = B

∗
(u, e

(1)
1 ) = u1, B∗(u, e

(1)
2 ) =

B
∗
(u, e

(1)
2 ) = u2, B

∗(u, e
(1)
3 ) = B

∗
(u, e

(1)
3 ) = u3. Since we also have R(:, e

(1)
1 ) = [1, 0, 0]⊤,

R(:, e
(1)
2 ) = [0, 1, 0]⊤, R(:, e

(1)
3 ) = [0, 0, 1]⊤ and the equality R(:,u)⊤R(:, e

(1)
i ) = B

∗
(u, e

(1)
i ),

this establishes that R(:,u) = (u1, u2, u3) and therefore (R
⊤
R)(u,u) = B∗(u,u).

In this case, we know that (R
⊤
R)(H,H) is a valid rank-three completion of B∗. This is

because it was already a valid completion for B
∗
, which encompasses all the specified (i.e.,

non-∗) off-diagonal entries of B∗, and the argument in the last paragraph showed that it is
also valid for the specified diagonal entries of B∗. Therefore by Lemma 4.3, this completion
defines a a solution of the system of polynomial equations f1 = 0, . . . , ft = 0. �

Remark 4.7. There exists an integral matrix A ∈ S
n with diag(A) = 0 and a positive integer

r such that every solution d∗ to (P2) posed with data (A, r) is doubly exponential in the size
of the input.

Proof. Consider the polynomial system x1 = 2 and xt = x2
t−1 for all t ∈ {2, 3, . . . , n}. For

this polynomial system, there is exactly one real solution and in this solution, xn = 22
n−1

.
In Shitov’s construction, some diagonal entries of the final completion are 1 + x2

i , ∀i ∈
{1, 2, . . . , k}. This means the optimal solution of (P2) with input A can be doubly exponential
in the size of input. �

The reduction presented in this section does not extend to showing the completeness of (P1)
for ∃R. The reason is that in order to accommodate doubly-exponential diagonal entries
that could arise in the construction, the initial given A would need to have equally large
entries on the diagonal (since the formulation of (P1) allows only subtraction of positive
numbers from the diagonal). These large entries require an exponential amount of space,
and therefore the reduction overall would not be polynomial time.

5. Conclusion

Our algorithms for problems (P1) and (P2) run in polynomial time provided their optimal
values (minimum rank of the positive semidefinite part of the decomposition) are bounded
above by an absolute constant. However, since these algorithms require the solution of
certain systems of multivariate polynomial equations (whose degrees, number of variables
and number of constraints grow with that optimal value), for many instances of (P1) and
(P2) these algorithms cannot be expected to be efficient in practice. One possible practical
approach is to remove the part of the algorithms which involves solving nonlinear systems of
multivariate polynomial equations and replace the enumeration of all subsets of size r with
a suitable data adaptive heuristic. Indeed, Algorithm 1 just requires solving a linear system
of equations and a Cholesky decomposition. Algorithm 1 can be implemented for improved
performance by exploiting special structures (e.g., sparsity, a priori information on ranks of
certain submatrices) in the given problem instances.
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Our hardness results leave at least three natural questions unanswered:

(1) Is (P1) complete for ∃R?
(2) Our completeness results establish equivalence for the feasibility question. Can these

results be strengthened to show some kind of equivalence in terms of the solution
sets (analogous to Mnëv’s related result)? I.e., does every semialgebraic set arise as
the solution set of (P2)? (P3)?

(3) Do problems (P1) and (P2) remain NP-hard when their data are restricted to 0, 1
matrices?

Appendix A. NP-hardness of (
∼

P2)

A.1. Restatement of (
∼

P2). A polynomial p(n) is fixed in advance. One is given B ∈ S
n such

that diag(B) = 0, an integer r, and a number ǫ > 0. Assume that there exists a vector d0 ≥ 0

and matrixH0 such that ‖H0‖F ≤ ǫ, B+H0+Diag(d0) � 0, and rank(B+H0+Diag(d0)) ≤ r.
Find a vector d ≥ 0 such that there exists H such that ‖H‖F ≤ p(n)ǫ, B+H+Diag(d) � 0,
and rank(B +H +Diag(d)) ≤ r.

The construction in this appendix takes as input an undirected graph G and produces a
matrix B, integer r, and number ǫ > 0. If the graph is 3-colorable, then there exists d and
H such that B + H + Diag(d) is semidefinite and has rank r, and ‖H‖F ≤ ǫ. Therefore,

a candidate algorithm that correctly solves (
∼

P2) must find some H and d satisfying B +
H + Diag(d) � 0, rank(B + H + Diag(d)) ≤ r, and ‖H‖F ≤ p(n)ǫ. On the other hand,
if G is not 3-colorable, our construction has the property that there is no (H,d) satisfying

the properties in the previous sentence, so the candidate algorithm that correctly solve (
∼

P2)
must report failure on such an instance. In this way we prove that any candidate algorithm

for (
∼

P2) can solve the NP-hard problem of determining graph 3-colorability.

A.2. Preliminary graph construction. Suppose we are given a graph G that we wish
to test for 3-colorability. Let c > 0 be a fixed integer. From G it is possible to construct
a larger graph G ′ with the following property. If G is 3-colorable, then so is G ′. However,
if G is not 3-colorable, then neither is any induced subgraph of G ′ whose number of nodes
is |V(G ′)| − c or larger. In other words, G ′ is “robustly” non-3-colorable in the sense that
non-3-colorability is preserved under deletion of up to c nodes.

The construction of G ′ is as follows. Replace every node in G with a gadget consisting of
3(c + 1) nodes. Connect these nodes with a complete 3-partite graph. In other words,
partition the nodes of the gadget into three sets of size (c+1) each, and then connect every
node to all the nodes in the other two partitions. This requires a total of 3(c + 1)2 edges.
The point is that in any 3-coloring of the gadget, the three partitions must be three different
colors, and this property holds robustly under the deletion of any c nodes.

Now, for each original node of G, pick one of the three partitions of its gadget to be “exposed”.
For every edge {i, j} of the original graph G, join all c + 1 exposed copies of i to all c + 1
exposed copies of j, so that the original edge of G is replaced by (c + 1)2 edges in G ′. It is
an easy exercise to show that this construction has the claimed property.
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For the remainder of this appendix, we assume that, first, the input graph is replaced by its
Peeters supergraph, and second, the transformation described in this subsection has been
applied to the supergraph. We therefore dispense with the notation G ′ for the transformed
graph.

A.3. A linear algebraic lemma.

Lemma A.1. Let A ∈ S
n be positive semidefinite, and suppose that all of its off-diagonal

entries are negative. Then rank(A) ≥ n− 1. Furthermore:

• If rank(A) = n − 1, then Null(A) is spanned by a vector all of whose entries are
positive. Furthermore, no vector all of whose entries are positive can be in Range(A).

• If rank(A) = n, then all entries of A−1 are positive.

Proof. The proof is by induction on n. The base case n = 1 is obvious. Now suppose the
claim holds for n− 1. Let us rewrite

A =

(
α w⊤

w A′

)
,

in which w < 0, and A′ ∈ S
n−1 is semidefinite with negative off-diagonal entries. We also

know α > 0 by Lemma 2.1 since w 6= 0. Therefore, the Schur complement S := A′−ww⊤/α
exists and is semidefinite. However, observe that the subtracted term ww⊤/α is positive
in all entries by the sign assumption. Since A′ previously had negative off-diagonal entries,
it follows that S must also have this property. Therefore, by the induction hypothesis,
rank(S) ≥ n− 2, hence rank(A) ≥ n− 1.

Next, consider two subcases based on whether rank(S) = n− 2 or rank(S) = n− 1. In the
first subcase, by induction, the 1-dimensional null space of S is spanned by some v > 0.
Let v̄ = [−w⊤v/α;v]. Then one checks by multiplying out that v̄ is in the null space of
A. Vector v̄ has all positive entries. Next, for a symmetric matrix, the range space and null
space are orthogonal complements. Since the null space is spanned by an all-positive vector,
it is not possible for an all-positive vector to be in the range (because the inner product of
two positive vectors is positive rather than 0).

The other subcase is that rank(S) = n− 1. Then one checks by multiplying out that

A−1 =

(
1/α+w⊤S−1w/α2 −w⊤S−1/α

−S−1w/α S−1

)

By the assumptions that w < 0 and induction hypothesis that S−1 > 0, one confirms that
all four blocks of this matrix are positive. �

A.4. Construction of B and r. The reduction to show is (
∼

P2) is NP-hard is again from
graph 3-coloring and is presented in this subsection. Let G be the graph to be tested for
3-colorability. Based on the construction in A.2, we will assume that it is 3-colorable with
robustness parameter c to be determined later. We define

B =

(
D K⊤

K A

)
,
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where the blocks D,K,A will be defined in the remainder of this subsection. The entries of
these matrices will depend on a ‘large’ parameter s > 0 and ‘small’ parameter δ > 0. The
precise value of δ is given in (14) below. The value of s is not precisely specified; instead,
s must be chosen large enough so that several inequalities involving the other parameters
hold. All of these inequalities are lower bounds on s, so there is no possibility of conflicting
inequalities for s. In addition, the valid range of parameters ǫ (which appears in the statement

of (
∼

P2)) will be determined in the upcoming sections.

First, block A is the same as the block A that was constructed before Theorem 3.10 used
for both the (P1) and (P2) input constructions. Thus, A ∈ R

3n×3n, where for this appendix
n := |V(G)|.
As earlier, use the term “nonedge” to refer to a pair {i, j} ∈ K(V(G))\E(G). In other words,
{i, j} ∈ E(Ḡ), the complement of G. Let m̄ denote the number of nonedges, which is equal
to
(
n
2

)
− |E(G)|.

Next, we turn to block K, which has nine columns per nonedge of G, i.e., 9m̄ columns. Focus
on one of those nine columns, say column u, for one particular nonedge {i, j} ∈ E(Ḡ). This
row is in correspondence with a particular ‘2’ and its symmetric partner in A (out of the
nine pairs that correspond to {i, j}), say the ‘2’ that appears in position (k, l) and (l, k) of
A. Then

K(t, u) =

{
s, if t = k or t = l,
sδ, else.

Thus, K has two kinds of entries, ‘small’ (namely, sδ) and ‘large’ (namely s) with exactly
two large entries per column. In what follows, we write K = K lg +Ksm with the large and
small entries respectively.

The parameter denoted “p(n)” in the statement of (
∼

P2) is actually p(9m̄+3n) in the context
of the construction of this section. Since the argument of p(·) does not change in this section,
we will abbreviate p(9m̄+ 3n) as p̂. We will assume that p̂ > 1 throughout.

Define D to be a 9m̄ × 9m̄ matrix all of whose off-diagonal entries equal −2p̂ǫ and whose
diagonal entries are 0’s. Finally, define the rank cutoff r := 9m̄+ 3.

A.5. Rank when G is 3-colorable. We argue that if G is 3-colorable, then there exists a
nonnegative d ∈ R

9m̄+3n and perturbation H ∈ S
9m̄+3n such that ‖H‖F ≤ ǫ and such that

rank(B +H +Diag(d)) ≤ 9m̄+ 3. Write d = [dE ,dV ], and partition

H =

(
H1 H⊤

2

H2 H3

)

conformally with B. Each nonedge of G corresponds to nine entries of dE . Consider diagonal
entry u ∈ {1, . . . , 9m̄} corresponding to nonedge {i, j}. Then we choose

dE(u) =

{
s2/2 if i, j have different colors,
s2 else.

We choose H1 = 0, H2 = 0, and H3 will be specified below.
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The goal is to show that we can choose dV and H3 so that the Schur complement of the
(1, 1) block of B +H +Diag(d), which is,

S := A−K(D +Diag(dE))−1K⊤ +Diag(dV) +H3,

is positive semidefinite and of rank 3. We write as S = S ′ +Diag(dV) +H3 where

S ′ := A−K(D +Diag(dE))−1K⊤.

We begin by considering

S ′′ := A−K lg Diag(dE)−1(K lg)⊤,

and below we apply Lemma 3.2 to bound ‖S ′ − S ′′‖.
Consider some entry (k, l) of A corresponding to nonedge {i, j} such that i, j have different
colors. The entry (k, l) of A, which equals 2, in turn corresponds to a column u of K.
Entry (k, l) of the Schur complement update K lg Diag(dE)−1(K lg)⊤ is determined by column
u of K lg because no other column of K lg has nonzero entries in both positions k, l. In
this case, K lg(k, u)dE(u)−1K lg(l, u) = s(s2/2)−1s = 2, hence S ′′(k, l) = 2 − 2 = 0. On
the other hand, if i, j have the same color, then K lg(k, u)dE(u)−1K lg(k, u) = s(s2)−1s = 1
and hence S ′′(k, l) = 2 − 1 = 1. Therefore, all off-diagonal entries of S ′′ corresponding
to nonedges in the same color class are 1’s, while those corresponding to different color
classes are 0’s. Entries corresponding to edges are 0’s by construction and are not updated
by K lg Diag(dE)−1(K lg)⊤. Finally, entries corresponding to the same vertex but different
representatives (i.e., off-diagonal entries of the 3×3 principal diagonal submatrices) are also
1’s by construction and are not updated. Thus, the off-diagonal entries of S ′′ consist of three
disjoint blocks of all 1’s.

Next, Lemma 3.2 states that
(12)

‖S ′′ − S ′‖F ≤ 1

2
‖Diag(dE)−1‖F · ‖K lg‖F ·

(
9‖K lg‖F · ‖Diag(dE)−1‖F · ‖D‖F + 5‖Ksm‖F

)
.

Note that the two hypotheses of the lemma can be confirmed using the formula (14) below
and the assumption that s is sufficiently large. We have the following straightforward upper
bounds based on construction of K,dE , D and the fact that ‖A‖F ≤ ‖A‖max ·

√
nnz(A):

‖K lg‖F ≤
√
18m̄s,

‖Ksm‖F ≤
√
27m̄nsδ,

‖Diag(dE)−1‖F ≤ 18m̄/s2,

‖D‖F ≤ 6m̄p̂ǫ.

Substituting these bounds in (12) yields

‖S ′ − S ′′‖F ≤ 27
√
2m̄3/2s−1

(
15
√
3m̄nsδ + 2916

√
2m̄5/2p̂s−1ǫ

)

= 34 · 5
√
6m̄2n1/2δ + 23 · 39 · m̄4p̂ǫ/s2.(13)

We can ensure both terms are at most ǫ/2 by defining

(14) δ :=
ǫ

10 · 34 ·
√
6m̄2n1/2

,
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and choosing s sufficiently large to upper bound the second term of (13) also by ǫ/2. Since
‖S ′ − S ′′‖F ≤ ǫ, we define H3 to equal S ′′ − S ′ in off-diagonal entries, and equal to 0 on
the diagonal. In this way S ′ +H3 is a matrix whose off-diagonal entries are 0’s and 1’s, and
the 1’s are arranged in three disjoint square blocks. Observe that the diagonal entries of
S ′ + H3 are all negative since the diagonal entries of A and H3 are 0’s, while the diagonal
entries of −K(D + Diag(dE))−1K⊤ are negative. Therefore, there is some positive vector
dV such that the diagonal entries of S ′ +H3 + Diag(dV) are all 1’s. This matrix is positive
semidefinite, its rank is 3, and it is the Schur complement after eliminating the (1, 1) block
of B +Diag(d) +H .

A.6. Rank when G is not 3-colorable. The hypothesis of this subsection is that G is not
3-colorable, and therefore, by robustness described in A.2, neither is any induced subgraph
with at least |V(G)|−c nodes, where c is to be determined. We prove that rank(B) ≥ 9m̄+4
for any perturbation of size p̂ · ǫ plus any diagonal matrix that yields a positive semidefinite
matrix. For this section, letH be a perturbation to B, and let d be a vector, and suppose that
‖H‖F ≤ p̂ǫ and B+H+Diag(d) � 0. We will argue that rank(B+H+Diag(d)) ≥ 9m̄+4.

As in the previous section, partition H and d conformally with B. The first aim of this
subsection is to show that the (1, 1) block of B +H +Diag(d), namely, D +H1 +Diag(dE)
is invertible. Once this is proved, the main task of this subsection is to show that rank of
the Schur complement, that is, the rank of

(15) S := A +H3 − (K +H2)(D +Diag(dE) +H1)
−1(K +H2)

⊤ +Diag(dV )

is at least 4.

We first observe that since ‖H1‖F ≤ p̂ǫ, all off-diagonal entries of D + Diag(dE) + H1 are
negative because H1 is not large enough to cancel the negative entries of D. This means that
rank(D + Diag(dE) + H1) ≥ 9m̄ − 1 by Lemma A.1. In fact, we claim more strongly that
rank(D+Diag(dE) +H1) = 9m̄. Consider summing all columns of K⊤ to yield a 9m̄-length
vector K⊤e. Since each row of K⊤ has exactly two entries equal to s and 3n − 2 entries
equal to sδ, each entry of K⊤e is exactly (2 + (3n − 2)δ)s. Thus, each entry of K⊤e is at
least 2s. Then each entry of (K +H2)

⊤e is at least 1.9s since ‖H2‖F ≤ ǫ, and ǫ ≤ 1 is much
smaller than s (i.e., choose s large enough to ensure this). Since B+H+Diag(d) is positive
semidefinite, it follows from Lemma 2.1 that (K + H2)

⊤e ∈ Range(D + Diag(dE) + H1).
Since this vector (K +H2)

⊤e has all positive entries, it then follows from Lemma A.1 that
rank(D +Diag(dE) +H1) = 9m̄.

Thus, for the rest of this analysis, S given by (15) is well-defined, and we define Π :=
(D + Diag(dE) +H1)

−1, which is a factor appearing in the formula for S. By Lemma A.1,
Π > 0. As noted in Section 3, the hurdle in the analysis of B +H +Diag(d) is that there is
no prior lower bound on the entries of dE , in other words, no prior upper bound on ‖Π‖F .
Therefore, we take cases depending on the sizes of diagonal entries of Π. (Recall that the
largest entry of a positive semidefinite matrix always appears on the diagonal.)

Case 1, For at least one u∗ ∈ {1, . . . , 9m̄}, Π(u∗, u∗) ≥ π1. Here,

(16) π1 =
2p̂ǫ

s2δ2
.
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Let us denote the entry of A corresponding to u∗ as A(k, l). Therefore, A(k, l) = 2, and
(k, l) corresponds to a nonedge {i, j} of G. We claim entries in columns k and l of A− (K +
H2)Π(K +H2)

⊤ are negative. The update (K +H2)Π(K +H2)
⊤ may be written as a sum

of rank-one matrices:

(K +H2)Π(K +H2)
⊤ =

9m̄∑

u=1

9m̄∑

u′=1

(K +H2)(:, u)Π(u, u
′)(K +H2)(:, u

′)⊤.

Consider one term, namely, (K + H2)(:, u
∗)Π(u∗, u∗)(K + H2)(:, u

∗)⊤. Note that (K +
H2)(:, u

∗) has entries at least 0.9s in positions k, l and entries at least 0.9sδ in the remaining
positions because K has entries s and sδ in these positions, and H2 is much smaller assuming
s is chosen sufficiently large. Therefore, every entry in row k of (K+H2)(:, u

∗)Π(u∗, u∗)(K+
H2)(:, u

∗)⊤ is at least 0.9s · π1 · 0.9sδ = 1.62s2δ(p̂ǫ)/(s2δ2) = 1.62p̂ǫ/δ > 3, by assumption
that p̂ ≥ 1 and ǫ/δ > 10 by (14). This is just one term in the update, but since all (9m̄)2

terms are positive matrices, the remaining terms can only further increase the overall prod-
uct. Thus, since A(k, l′) ≤ 2 for all l′ = 1, . . . , 3n, and the (k, l′) entry of the update is at
least 3, we conclude that the (k, l′) entry of A− (K +H2)Π(K +H2)

⊤ is bounded above by
−1. This same analysis applies to the (l, l′) entry for all l′ = 1, . . . , 3n.

Next, consider an entry A(k′, l′) corresponding to an edge {i′, j′} in G. By our construction,
A(k′, l′) = 0. Observe that entry (k′, l′) of (K + H2)Π(K + H2)

⊤ is at least (0.9sδ)2π1 =
1.62s2δ2(p̂ǫ)/(s2δ2) = 1.62p̂ǫ. This is seen by considering the same term used in the previous
paragraph, namely, entry (k′, l′) of (K +H2)(:, u

∗)Π(u∗, u∗)(K +H2)(:, u
∗)⊤, noting that the

other terms can only increase the update. Thus, the (k′, l′) entry of A−(K+H2)Π(K+H2)
⊤

is bounded above by −1.62p̂ǫ.

Since the off-diagonal entries of S (given by (15)) equal A − (K + H2)Π(K + H2)
⊤ + H3

and ‖H3‖F ≤ p̂ǫ, we conclude that all entries of S analyzed in the previous few paragraphs
are negative. In other words, all entries of S in columns k and l and all off-diagonal entries
corresponding to edges of G are negative.

Find a 3-cycle in G that does not include either i or j, say i1, i2, i3 ∈ V(G). Note that G has
many 3-cycles if we first apply the robustifying transformation described in A.2, so certainly
such a cycle can be found. Each of these three nodes corresponds in turn to three rows of
A; let l1, l2, l3 be three such rows of A (choose among the three representatives of each of
i1, i2, i3 arbitrarily). Now consider the 5×5 principal submatrix of S indexed by k, l, l1, l2, l3.
All the off-diagonal entries in this matrix are negative as argued in the previous paragraph.
Therefore, the rank of this submatrix is at least 4 by Lemma A.1. This concludes the analysis
of Case 1.

Case 2, Π(u, u′) < π1, for all u, u
′ = 1, . . . , 9m̄. As in Case 1, π1 is given by (16).

The assumption of this case allows us to derive a stronger upper bound than π1 on the
off-diagonal entries of Π. We already know that Π is positive definite and positive. Recall
from the definition of Π that Π(D + Diag(dE) +H1) = I. Focusing on a diagonal entry of
this product, we know that for each u = 1, . . . , 9m̄,

9m̄∑

u′=1

Π(u, u′)(D(u, u′) +H1(u, u
′)) + Π(u, u)d(u) = 1.
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Since Π(u, u′) ≤ max(Π(u, u),Π(u′, u′)) < π1 = 2p̂ǫ/(s2δ2), |D(u, u′)| ≤ 2p̂ǫ, and |H1(u, u
′)| ≤

p̂ǫ, we conclude that each term in the above summation is at most 6p̂2ǫ2/(s2δ2) in magni-
tude. By choosing s sufficiently large, we are assured that every term in the summation is
at most 1/(90m̄) in magnitude. Then, we conclude that the first summation is at most 1/10
in magnitude, and therefore Π(u, u)d(u) ≥ 0.9 so d(u) ≥ 0.9/π1 for each u = 1, . . . , 9m̄.

Now consider an off-diagonal entry of the product Π(D + Diag(dE) +H1), say entry (u, u′)
to obtain

9m̄∑

u′′=1

Π(u, u′′)(D(u, u′′) +H1(u, u
′′)) + Π(u, u′)d(u′) = 0.

The magnitude of each term in the summation is at most 6p̂2ǫ2/(s2δ2) as in the last para-
graph. By choosing s sufficiently large, we can ensure that this is at most δ2/(90m̄), so
the summation has magnitude at most δ2/10. Also, d(u′) ≥ 0.9/π1 as shown in the last
paragraph. Therefore,

Π(u, u′) ≤ δ2

10 · 0.9/π1

,

for each u, u′ = 1, . . . , 9m̄ with u 6= u′, which implies that Π(u, u′) ≤ δ2π1/9, which is
stronger than the upper bound of π1 that holds by the assumption of this case.

Next, let us define two ranges of Π(u, u) for u = 1, . . . , 9m̄.

• Small entries satisfy Π(u, u) ∈ (0, π0].
• Large entries satisfy Π(u, u) ∈ (π0, π1).

Here,

(17) π0 =
ǫ0

27m̄ns2δ
.

In this formula, ǫ0 is the universal constant introduced in Theorem 3.4. Note that the case
that Π(u, u) > π1 (which could be called “very large”) was already handled by Case 1.

We now form a graph Glg defined as follows. The nodes V(Glg) of the graph are integers
1, . . . , 3n in correspondence with the rows/columns of A. Given a node in G, we will say
that it “owns” the three nodes of Glg associated with that original node. Let k, l be a pair
of nodes of Glg, k 6= l, that correspond to a nonedge of G. In this case, there is an index
u ∈ {1, . . . , 9m} that corresponds to the pair (k, l). Include the edge {k, l} in E(Glg) whenever
Π(u, u) is large according to the above dichotomy.

We now take two subcases of Case 2.

Case 2a, the edges of Glg can be covered by c nodes of Glg.

Here, c is the constant that makes non-colorability of G robust; the precise value of c will be
selected in Case 2b below. Note that this case includes the subcase that Glg has no edges,
i.e., there are no large diagonal entries of Π.

Let this vertex cover be denoted Σc ⊆ V(Glg). Let Σ ⊆ E(V(G)) be the at most c nodes
of G that collectively own Σc, and let Σlg be the at most 3c nodes of Glg owned by Σ. By
construction Σc ⊆ Σlg.
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Let Σ̄ = V(G) \ Σ and let Σ̄lg be the 3|Σ̄| nodes of Glg (equivalently, rows of A) owned
by Σ̄. Since G is robustly not 3-colorable with parameter c, the induced subgraph G[Σ̄]
is not 3-colorable. Recall that S stands for the Schur complement of the (1, 1) block of
B + H + Diag(d). We will argue that S(Σ̄lg, Σ̄lg) may be written as A + L + H ′, where
A,L,H ′ satisfy conditions 2(a)–(d) of Theorem 3.4. Since G[Σ̄] is not 3-colorable, it follows
from the theorem that rank(S(Σ̄lg, Σ̄lg)) ≥ 4, which in turn implies rank(S) ≥ 4, thus
concluding Case 2a. The matrix A in this formula for S(Σ̄lg, Σ̄lg) is the same as the matrix
A defined earlier in the appendix, all of whose entries are 0’s, 1’s, or 2’s.

Recall from the notation of the theorem that L is may have arbitrary entries in positions
corresponding to nonedges of G[Σ̄] and in diagonal positions. Therefore, these entries of
S(Σ̄lg, Σ̄lg) do not need any further analysis in our decomposition of S(Σ̄lg, Σ̄lg) as the sum
A+L+H ′. The entries of S that need consideration are therefore the entries corresponding
to edges (which are 0’s in A) and the six off-diagonal entries of the 3 × 3 diagonal blocks
(which are 1’s in A).

Therefore, we now proceed to bound the entries of the update to A

H ′ := H3 − (K +H2)Π(K +H2)
⊤

that correspond to edges of G[Σ̄] and to off-diagonal entries of diagonal blocks of S(Σ̄lg, Σ̄lg).
Let us call these the “distinguished” entries of H ′. As above, let us write the second term
of H ′ as a sum of (9m̄)2 rank-one matrices:

(K +H2)Π(K +H2)
⊤ =

9m̄∑

u=1

9m̄∑

u′=1

(K +H2)(:, u)Π(u, u
′)(K +H2)(:, u

′)⊤

and classify the terms into three categories: (a) terms such that u = u′ and Π(u, u) is large,
(b) terms such that u = u′ and Π(u, u′) is small, and (c) terms such that u 6= u′.

For u in category (a), a large diagonal entry of Π, we know Π(u, u) ≤ π1 by the hypothesis of
Case 2. Furthermore, we know that entries of K(:, u)K(:, u)⊤ in distinguished positions are
(sδ)2 (that is, small entries of K squared) because the two large entries of column K(:, u),
say in positions k, l, are such that both k, l are excluded from Σ̄lg by construction of Σ̄lg.
The perturbation H2 raises this to at most 2.2(sδ)2 (since ‖H2‖F ≤ p̂ǫ, and we can make s
sufficiently large). Therefore, if (k, l) is a distinguished entry and u is in category (a), we
have shown that

((K +H2)(:, u)Π(u, u)(K +H2)(:, u)
⊤))(k, l) ≤ 2.2(sδ)2π1

= 2.2p̂ǫ.

Next, if u is in category (b), a small diagonal entry of Π, we know that Π(u, u) ≤ π0.
Furthermore, we know that entries of K(:, u)K(:, u)⊤ in distinguished positions are either
(sδ)2 or s2δ, i.e., a product of two small entries of K or a small and large entry. This is
because the products of two large entries appear only in positions (k, l) and (l, k), where k
and l are the indices of the row associated with a nonedge by construction of K. However,
entries corresponding to nonedges are not distinguished in this analysis. Therefore, an upper
bound on this entry is s2δ, and therefore an upper bound on the corresponding entry of
(K +H2)(:, u)(K +H2)(:, u)

⊤ is 1.1s2δ. Therefore, if (k, l) is a distinguished entry and u is
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in category (b), we have show that

((K +H2)(:, u)Π(u, u)(K +H2)(:, u)
⊤)(k, l) ≤ 1.1s2δπ0

=
0.1ǫ0
27m̄n

.

Finally, if (u, u′) is in category (c), i.e., an off-diagonal entry of Π, then entries ofK(:, u)K(:, u′)⊤

can be as large as s2, and Π(u, u′) ≤ π1δ
2/9 by the analysis at the beginning of Case 2, so

for any entry (k, l) of the product (distinguished or not),

((K +H2)(:, u)Π(u, u
′)(K +H2)(:, u

′)⊤)(k, l) ≤ 1.1s2 · π1δ
2/9

≤ 0.3p̂ǫ.

In all three cases we have an upper bound on the contribution of one rank-one term to a
distinguished entry of H ′. The contributions from category (b) add up to at most 0.1ǫ0/(3n)
since there are at most 9m̄ category (b) terms. The sum of terms from categories (a) and
(c) is at most 2.2 · (9m̄)2p̂ǫ since there are at most 9m̄ category-(a) terms and at most
(9m̄)2 − 9m̄ category-(c) terms. We can place an upper bound of 0.9ǫ0/(3n) on the sum of
terms of categories (a) and (c) if we impose the assumption:

(18) ǫ ≤ ǫ0
600m̄2np̂

.

With this assumption in place, we can now claim that the sum of all contributions to a
distinguished entry of H ′ is at most ǫ0/(3n) in magnitude. The non-distinguished entries
of H ′ may be set to 0 since these entries correspond to edges (which are covered by L or
Diag(dV)). Since the size of H ′ is 3n×3n, it follows that ‖H ′‖F ≤ ǫ0, and thus all hypotheses
2(a)–(d) of Theorem 3.4 are satisfied except the rank assumption. Since the graph is not
3-colorable, this implies that rank(S(Σ̄lg, Σ̄lg)) ≥ 4. This concludes the analysis of Case 2a.

Case 2b, more than c nodes of Glg are required to cover the edges of Glg.

We will now specify c = 5.

Let u be a large diagonal entry of Π corresponding to entry (k, l) of A. This entry also
corresponds to an edge of Glg and to a nonedge {i, j} of the original graph G. We have the
following lower bound:

((K +H2)Π(K +H2)
⊤)(k, l) ≥ 0.9s2π0

=
ǫ0

30m̄nδ

≥ ǫ0 · 27
√
6m̄

n1/2ǫ

≥ 16200
√
6m̄3n1/2p̂

> 3.96 · 104 · m̄3n1/2p̂.

The first line is obtained because K(k, u) = K(l, u) = s2 (i.e., large entries of K), H2 does
not perturb this much assuming s is chosen sufficiently large, and Π(u, u) ≥ π0 by assumption
that u is a large diagonal entry. Contributions from the other entries of Π can only increase
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this since K +H2 and Π are both positive matrices. The second line follows from (17), the
third from (14), and the fourth from (18). Thus,

S(k, l) = A(k, l) +H3(k, l)− ((K +H2)Π(K +H2))(k, l)

< 2 + ǫ− 3.96 · 104

< −3.95 · 104.

Let us rename S as S(0) and consider performing the following operations for µ = 0, 1, 2, . . .

(1) Let S̃(µ) ∈ S
3n−µ denote PS(µ)P⊤, where P is a permutation matrix chosen so that

the largest diagonal entry of S̃(µ) is in the (1, 1) position.

(2) Terminate if S̃(µ)(1, 1) = 0.
(3) Else let S(µ+1) ∈ S

3n−µ−1 be the Schur complement of the (1, 1) entry of S̃(µ).

Clearly the sequence of matrices produced by this iteration are all symmetric and positive
semidefinite by the Schur complement lemmas. Recall the following fact: the entry in a pos-
itive semidefinite matrix with the largest magnitude must occur on the diagonal. Therefore,
S̃(µ)(1, 1) is the entry with largest magnitude of S̃(µ). This in turn means that step 2 will
not terminate provided that S(µ) has any nonzero entry.

We claim that we can perform these operations at least 4 times before termination in step
2. Assuming we prove this claim, this implies that rank(S) ≥ 4 by the Schur complement
lemmas, and this would therefore conclude the analysis of Case 2b.

To prove that we can perform the above iteration at least 4 times, we establish the following
claims by induction.

Claims:

(1) The largest positive off-diagonal entry in S(µ) is at most (2 + ǫ)µ+1.
(2) Let rµ := (2+ ǫ)µ+1−104. Call the entries of S(µ) whose value is less than rµ the “big

negative entries.” The big negative entries cannot be covered by fewer than c+1−µ
rows/columns of S(µ).

Once we prove these claims by induction, then the main result follows because rµ < 0 for
µ = 0, 1, 2, 3, 4 and c+1−µ > 0 for µ = 0, 1, 2, 3, 4, so the second claim implies that there is
at least one nonzero entry in S(µ), and hence step 2 of the above algorithm will not terminate.

The base of the induction is as follows. Recall that

S(0) = S = A +H3 − (K +H2)Π(K +H)⊤ +Diag(dV).

The maximum entry of A is 2, the maximum entry of H3 is ǫ, the third term is negative, and
the fourth term does not affect off-diagonal entries. Thus, the first induction claim holds for
µ = 0. We argued earlier that S(0) contains an entry smaller than −104 in position (k, l) for
every (k, l) corresponding to a large diagonal entry of Π, i.e., edges of Glg. The hypothesis
for Case 2b is that these entries cannot be covered by fewer than c+1 rows/columns of S(0),
i.e., nodes of Glg. Thus, the second induction hypothesis also holds for µ = 0.

Now assume the hypothesis holds for µ; we show that it holds for µ + 1. Observe that
S(µ+1) = S̃(µ)(2 : 3n − µ, 2 : 3n − µ) − ww⊤/S̃(µ)(1, 1), where w = S̃(µ)(2 : 3n − µ, 1).
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Consider an off-diagonal entry of S(µ+1), say entry (i, j) with i 6= j. We have: S(µ+1)(i, j) =
S̃(µ)(i + 1, j + 1) − wiwj/S

(µ)(1, 1). There are two cases: either wiwj ≥ 0 or wiwj < 0. In
the first case, S(µ+1)(i, j) ≤ S(µ)(i + 1, j + 1). Since the bounds appearing in the induction
claims are both upper bounds on the entries of S(µ) and these upper bounds increase with
µ, then a decrease in an entry can only further sharpen the induction claim.

On the other hand, if wiwj < 0, say, without loss of generality, that wi < 0 and wj > 0, then

−S̃(µ)(1, 1) ≤ wi < 0 since, as noted earlier, the largest magnitude entry of S̃(µ) appears
in the (1, 1) position. Therefore, |wiwj/S̃

(µ)(1, 1)| ≤ |wj| ≤ (2 + ǫ)µ, the second inequality

arising from induction claim 1 since wj > 0. Thus, S(µ+1)(i, j) ≤ S̃(µ)(i+1, j+1)+ (2+ ǫ)µ.
Combined with the induction hypothesis, this means that the largest positive value in S(µ+1)

in an off-diagonal position is at most (2 + ǫ)µ+1, thus establishing the first induction claim.
Similarly, since rµ+1 = rµ+ (2+ ǫ)µ, the big negative negative entries of S̃(µ) remain big and
negative in S(µ+1).

To finish the induction, we also need to show that the covering number of the big negative
entries of S(µ+1) is at most c+1−(µ+1). This follows because the preceding paragraphs show
that all big negative entries of S̃(µ) persist in S(µ+1) except for those lost in the discarded
first row and column of S̃(µ). Therefore, since the big negative entries of S̃(µ) needed at least
c+ 1− µ rows/columns to be covered, then those of S(µ+1) need at least c+ 1− µ− 1. This
concludes the induction and hence the analysis of Case 2b.
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[21] Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale matrix com-
pletion. Mathematical Programming Computation, 5(2):201–226, 2013.

[22] F. Rouillier, M.-F. Roy, and M. Safey El Din. Finding at least one point in each connected component
of a real algebraic set defined by a single equation. Journal of Complexity, 16(4):716–750, 2000.

[23] J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Diagonal and low-rank matrix
decompositions, correlation matrices, and ellipsoid fitting. SIAM Journal on Matrix Analysis and Ap-
plications, 33(4):1395–1416, 2012.

[24] J. B. Saxe. Two papers on graph embedding problems. Technical Report CMU-CS80–102, Department
of Computer Science, Carnegie-Mellon University, 1980.

[25] Alexander Shapiro. Statistical inference of semidefinite programming. Math. Program., 174(1-2, Ser.
B):77–97, 2019.

[26] Yaroslav Shitov. How hard is the tensor rank? arXiv preprint arXiv:1611.01559, 2016.
[27] Yilei Wu, Yingli Qin, and Mu Zhu. High-dimensional covariance matrix estimation using a low-rank

and diagonal decomposition. Canadian Journal of Statistics, 48(2):308–337, 2020.

41


	1. Introduction
	2. Algorithms
	3. NP-hardness.
	4. Completeness in the first-order theory of the reals
	5. Conclusion
	Appendix A. NP-hardness of Approx (P2)
	A.1. Restatement of Approx (P2)
	A.2. Preliminary graph construction
	A.3. A linear algebraic lemma
	A.4. Construction of B and r
	A.5. Rank when G is 3-colorable
	A.6. Rank when G is not 3-colorable

	References
	References


